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Abstract - In this paper, we study a stress diffusive perturbation of the system describing a viscoelastic flow. We
analyse the boundary layer which arises near the boundary and we observe in particular that there is no boundary
layer on the velocity at the first order.
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1 Introduction

We study the asymptotic behavior of the solutions of the Oldroyd viscoelastic model when an additive coef-
ficient of stress diffusion goes to zero. The problem models the flow of a viscoelastic incompressible fluid. Tt
is considered on an open and regular domain Q C R® whose boundary is noted I'. The model we consider
contains an additional stress diffusion term which derives from a microscopic dumbbell analysis, see [7]. This
perturbation is often present for the determination of shear banding flow, see [12]. For the mathematics study
of such a model, the presence of a diffusive term can be interesting, see [3]. More generally, if for theoretical,
numerical or physical reasons we need to add such a term, we prove here that such an addition does not
basically influence the solution. In order to highlight the dependence in this coefficient of stress diffusion ¢,
we write the model in the form:

Owuf 4+ uf - Vu® — Au® + Vp® = dive®, dive® =0,
0o +u® - Vo + g(0°,Vu®) + 0° —elAo® = D(u), (1)
u®(0) = Uinit, 0°(0) = Oinit,

with Neumann boundary conditions for the stress and Dirichlet for the velocity:

do®
= E:. 2
o| =0 Wl =0 )

Moreover, the bilinear function g(c, Vu) is defined by:
g9(o,Vu) = =W (u).c + . W(u) — a(D(u).c + 0.D(u)), a€[-1,1],

where D(u), W (u) respectively represent the deformation and vorticity tensors.

It is known that such a system admits a solution (see [3, 5, 6]). Our goal is to describe the behavior of
this solution (u®,p°,0°) when the viscosity € goes to zero. We show that the solution converges strongly in
L? (and in fact in any space which the boundary condition 8n<75|F = 0 does not appear) towards (ug, po,00),
solution of the system without the stress diffusive term:

Ogug + ug - Vug — Aug + Vpg = div og, div ug =0,
0yo0 + ug - Voo + g(oo, Vug) + 0o = D(ug), (3)
ug(0) = Uinit, 00(0) = Oinit, uolr = 0.

There again, it is already shown that such a system admits a solution (see [4, 8, 11]).

To recover the boundary condition (2) on o, the solution of (1) oscillates very quickly close to the boundary
converging toward (3). Here, we analyse the above-mentioned generated boundary layer. Previous studies have
already been undertaken on such phenomena but in different physical cases, see G. Carbou, P. Fabrie and O.
Gueés [1], O. Gues and E. Grenier [9], O. Gues [10] or D. Sanchez [13]. It is known in particular that if the
boundary is characteristic (u®.n|r = 0) then the size of the generated boundary layer is of order /.
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2 Statements of the results

The main result is the following

Theorem 2.1 Assume uin; € H*(Q) verifies div (winit) = 0 and winig-nlr = 0, and 0, € H*(Y) then there
exists T > 0 and two functions P € L>(0,T; HY(Q x RT)) N L2(0,T; H?(Q x R")) and ¥ € L*(0,T; H2( x
R*)) such that, on [0,T] x Q, we have
us(t,:c) = UO(t7 .’E) + \/g ’lU(t,iL'),
d(z)

P (t,2) = po(t,2) + VE P(t,m, ﬁ) T Vet ),

o°(t,x) = oo(t,z) + Ve E(t,x, %) + Ve 1(t, ).

where d(z) represents the distance from x € Q to the boundary I'. The functions w, q and T verify :
w € L®(0,T; H'(Q)) N L*(0,T; H*(Q)),
q € L*=(0,T; L*(2)) N L*(0, T; H'(Q)),
7€ L®(0,T; HY(Q)) and +er € L*(0,T; H*(Q)).

Remark 2.1

e The functions P and ¥ introduced above are profiles of boundary layer which satisfy

lim P(t,z,2z) =0 and lim X(¢,z,2) =0.

z—r+00 z2—r+00

o [t is interesting to note there is no boundary layer for the velocity term. In fact, we will see during the
proof of this theorem that the free divergence condition implies the lack of the boundary layer term in
the normal velocity component. However, this term naturally appears in the higher order term of the
tangential velocity component.

The proof is organised in three steps. The first consists in building an approximate solution: we carry out
a formal asymptotic extension of the solution. In the second step, we solve two profile equations: the first
one corresponding to the initial equations (1) without the term eAg, the second one to a hyperbolic-parabolic
type in which it is necessary to control the decay in the fast variable. The third step consists in showing that
the remainder of the extension is bounded in an adequate space.

3 Boundary layer profiles

According to O. Gues [10], we seek an asymptotic extension of u°, p° and o€ in the form:

fet,z) = fo (t,x,%?) +ve fi (t,m,%) + ..

For such a method, it is convenient to introduce the following notations. For all i € N, we write:
filt,z,2) = fi(t,z) + };(t,a:,z) with  fi(t,z) = lirll filt,z,2z) and f with fast decay in z.
Z—r+00

We then replace formally (u®,p®,o¢) by its asymptotic extension in the equations (1). We then seek to deter-
mine the profiles (u;, p;,0;) by identifying all terms of the same order in e.

Order —1 The only contribution —82uq is zero. Since Uy does not depend on z, this condition can be
written as —92ug = 0. Moreover, the decay condition of all the derivatives of ug necessarily implies ug = 0.



1

Order —% Knowing that uo does not depend on z, one can conclude that the only terms of order —3

resulting from the Navier-Stokes equation are:
—8%uy + Vd 8.po = Vd.0,05. (4)
Let us note that the term ﬁ (ug - Vd) 0,04 is of order 0. Indeed, using the condition (ug - Vd)|r = 0, it is

written

% (uo - Vd) 8,55 = ((uo - Vd)*20.55)

where (ug - Vd)* is a regular and bounded function.
Order 0 The free divergence condition writes div ug + Vd.0,u; = 0. We let z — +o00. We deduce:
div ug = 0. (5)
9:(ur - Vd) = 0. (6)
In the same way, the terms of order 0 in the equation in ¢ are written:
015 + uo - Voo + 9(G0, Vug) + 70 = D(uo), (7)

D30 + uo - Voo + (uo - Vd)* 20,50 + g(d0, Vue) + oo = 0. (8)

We can then determine the profiles. Indeed, oo = 0 is the unique solution of (8), zero at ¢ = 0 and at the
boundary. Then taking the scalar product of (4) with Vd, and using the equation (6) we deduce that pg = 0.
The equation (4) thus rewrites 02u; = 0. We thus obtain:

ur =0, po=0, 0o=0.

This result makes possible to write more easily the equation resulting from Navier-Stokes at zero-order (by
separating the slow part and the oscillating part):

Orug + ug - Vug — Aug + Vpg = div oy, (9)

~0%u5 + Vd 8.p, = Vd.0,071. (10)
We defer these results in the equations concerning the nonoscillating parts (5), (7), (9) and we deduce from it

that ug, po and ¢ are solutions of the problem (3).

Order % We start again computations: the free divergence condition is written:

divu; =0, 8,(a@3-vd) = 0.

Taking the scalar product of (10) with Vd, we deduce the first oscillating profile in pressure: p; = Vd.(Vd.o7).
Concerning the stress equation, we find:

831 + ug - Va1 + (ug - Vd)#20,57 — 8257 = L(57),

0.51 L
291, —0,zel’ — on F, (11)

01(0,2,2) =0,

o1 with fast decay in z.
where L is a linear application, whose coefficients depend only on the slow variables ¢ and z (see [5, 6]):

L(t) = (Vd Vd Vd.(Vd.T) — Vd Vd.7) — 7 — g(1, Vug) — g(00, (Vd Vd Vd.(Vd.T) — Vd Vd.1)).



4 Asymptotic extension

4.1 First term of the extension

In the study which we have just undertaken, we obtained the principal terms of extension ug, po and og as
solutions of the system (3). This system was studied previously (see [4, 8, 11]): the existence results are
obtained by fixed point methods. Using a similar method, we obtained in [6]:

Theorem 4.1 Assume uiny € H* satisfies div (uinit) = 0 and winiz.n|r = 0, and 0ini € H* then there exists
T > 0 such that (3) admits a solution (ug,o9) verifying

up € L=®(0,T; HY N L*(0,T; H%) and oo € L™(0,T; H).
Moreover, the solution verify the following estimates:
dyug € L>(0,T; H?) N L*(0,T; H?), dyo0 € L*°(0,T; H?),
dug € L=(0,T; L*) N L*(0,T; H), d2ag € L™(0,T; H).
Remark 4.1 More precisely, the data have to fulfil compatibility conditions (see [6]). If the data are not
appropriately prepared, we expect to observe a boundary layer with time. J.Y. Chemin, B. Desjardins, I
Gallagher and E. Grenier [2] proved (in o different physical framework) that the solution also depends on

variables Eik, for k € N. For a rather long time, even for no appropriately prepared data, the profile which we
found approaches the exact profile.

4.2 First boundary layer terms
The only equation of profile which we have to solve is that relating to o7. We seek a1 (t, z, z) solution of the
linear equation (11). We then prove an existence theorem of regular solutions:
Theorem 4.2 If ug verifies ug € L°°(0,T; H*(R2)), div (uo) = 0 and uo.n|r = 0 and if oo verifies oo €
L2(0,T; H*(Q)) and 8;00 € L?(0,T; H3(Q)) then the equation (11) admits a solution o1 such that

o1 € L®(0,T; HY(Q) ® H*(R")) N L*(0,T; H'(Q) ® H*(R")),

o1 € L*(0,T; H*(Q) ® L*(R")) N L*(0, T; H*() ® H'(R')).

Remark 4.2 The regularity we prove in this theorem implies in particular:
o1 € L®(0,T; H*(Q2 x RT)), 8,01 € L™®(0,T; H'(Q x R")) N L*(0,T; H*(Q x RM)).

The proof is articulated around three points. We carry out initially an extension of the condition at the
boundary in order to obtain an equivalent system with homogeneous boundary conditions. We then show by
a Galerkin method that this new system has weak solutions. In a next step, we set up a method allowing to
increase the regularity of the solution until obtaining the desired regularity.

Proof of the theorem 4.2

Step 1 : extension. The first step consists in being brought back to a homogeneous problem at the
boundary of the domain €2 x [0, +o00[. For this, we carry out an extension of the Neumann condition. Precisly,
we define the function ¢ € C*°(R", R) such as ¢’(0) = 1 and supp(¢{) C [0, 1]. We note

0(t,x,2) = ((2)Vd(z) - Voo(t,z), we have § € L*(0,T; H*(Q) ® HE°(R"))
and let ;7 = s — 6. The tensor s is the solution of
O+ ug - Vs + (ug - Vd)* 28,5 — 9%s = L(s) + K,
6zs|z:0 =0,
5(0,z,2) =0,
s with fast decay in z



where K = 8,0 + ug - VO + (ug - Vd)#20.0 — 820 — L(#) and K € L*(0,T; H*(?) ® H(R1)).

Step 2 : Existence of solution. Let M > 0. We start solving the problem for z €]0, M[ with the
following boundary conditions: 8,$|,=0 = $|,=m = 0. We use Galerkin approximations choosing s as a test
function (see [5, 6]):

d
E|S|32,M + |6ZS|3Z,M S C(|8|§IZ,M + |K|§:z,oo) (13)

M
where the norm | - |, a on the space L?(Q) ® L?(0, M) is defined by |f|zz,m = / / |fI%.
aJo

The Gronwall lemma provides a L° bound for |s|; ,, then L? for |0,5|;,a- These bounds being indepen-
dent of M and the equation being linear, we deduce:

s € L®(0,T; L*(Q) ® L*(R")) N L*(0,T; L*(Q) ® H*(R")).

Step 3 : Regularity. = We apply a differential operator Z to the equation (12). The function Zs
satisfies an equation of the same type as (12) where the second member contains not only ZF but also all the
commutators [0, Z], [ug - V, Z], etc. Choosing various operators Z in a precise order, we should be able, by
each step, control the second member and show that Zs is as regular as s.

The choice of the operator Z is limited to the fact that Zs must also satisfies the boundary conditions
of the problem (12). We distinguish the conormal derivatives (by the order 28,, V, (29,)%, VZ8, and V?)
for which we can apply this method, and the normal derivative (8,) which will be handled at last using the
regularisation of the operator 9; — 82. We deduce

s € L®(0,T; H'(Q) ® H*(R")) N L*(0,T; H' () ® H3(RY)).

5 Convergence of the extension

The computations carried out during the part 3 are valid only in the neighbourhood of the boundary T (it is
necessary to take a well defined and regular d function). To justify the calculations not only near the boundary
but also on 2, we introduce a function ¢ € C§°(R?, R) whose support is contained in a neighbourhood of the
boundary. 1) is equal 1 in a more restricted neighbourhood of this boundary. To extend the condition on the
boundary 8,7 (t, x,0), we introduce § € L (R*, H?) such that 8,6 € L*(R*, H') and 8,,0(¢, z) = 0,01 (t, z,0)
on RT x I'. We write finally (u®,p®,0°) in the form

u®(t,7) = uo(t,z) + \/E w(t, z),

- d(z
) = mo(t2) + VE w0 (1,0, 02 ) + VEa(t.0),
d(z)
NG
Then, these profiles are introduced in the equations (1). Using the equations satisfying by uo, po, 0o, p1 and
o1, a Navier-Stokes like equation for (w,q) and another equation for the stress 7, are deduced.

o°(t,x) = oo(t,x) + Ve ¥(x)o1 (t,x, ) + Ve O(t,z) + Ve 1(t, x).

Formally multiplying the equation of evolution for w by Aw (A being the Stokes operator) and the equation
of evolution for the stress (7) by 7 then by —Ar, and gathering the two estimates, we find an estimate of the
form: ,

y'(t) + z(t) < P(y(t)),
where y = [[7[|7: + lwllfs, and 2 = ||7ln +ell7l|Fe + llwlle,

where the polynomial P is independent of €. In a traditional way, it is deduce that there exists a time T'
independent of & such that w and 7 are bounded in L>°(0,7; H'), w and /27 being bounded in L2(0,T; H?).
Concenring the regularity of the remainder in pressure g, we use the regularity of the Stokes problem.
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