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Introduction

The aim of this paper is to show existence, uniqueness and regularity results for a system modeling a
mixture of non-Newtonian flow. Several results have already been established either in the monophasic case
[13, 15, 21, 24] or in the diphasic Newtonian case [4, 5]. In [9], some results are proven when the stress tensor
is submitted to small diffusion process but the methods used are not transposable in the present case.

In [13, 15] the authors proved on the monophasic framework that there exists a unique strong solution local
in time. C. Guillopé and J.C. Saut [15] also proved that the solution is globally defined if the data are small
and if the fluid is not very elastic. E. Fernandez-Cara, F. Guillen and R.R. Ortega [13, 14] obtained a similar
result with large elasticity on [0,T'[, T being arbitrarily large but finite. In this paper we present the diphasic
version of these results and we show global existence for small data without hypothesis on the elasticity. The
additional difficulty being the intoduction of an order parameter which describes each phase of the alloy. The
evolution of this order parameter is given by the Cahn-Hilliard equation.

The results presented here are valid in dimension 2 and 3. In the two-dimensional case, the estimates
are not optimal. For example, it is known that the Navier-Stokes equation admits global strong solution in
dimension 2. Nevertheless, in the general framework studied here, there does not exist, to our knowledge,
results of this type for unspecified initial data. This is due to non-linearities of the Oldroyd constitutive law.
It should be noted that a particular choice of this law (choice of a corotational convected derivative for the
constraint, see [18]) makes it possible to obtain better results [9, 21].

This paper is divided in five parts. In section 1 we briefly introduce the model, whose derivation was
realised in [5, 9]. A system coupling three equations is obtained. The first one corresponds to a Cahn-Hilliard
equation with a transport term. It describes the evolution of the order parameter and the thermodynamical
properties of the diffusive interface. The second equation is a non-homogeneous Navier-Stokes equation which
model the hydrodynamic properties of the flow. The third equation corresponds to the constitutive law of
Oldroyd type [22] describing non-Newtonian effects in the mixture. It should be noted that some numerical
works was realised with this model, see for instance [5] or [6].

In section 2, we announce the main results: local existence, uniqueness, global existence and regularity.
These results require the introduction of several classical physical assumptions and of a mathematical back-
ground linked to the equations.

The next sections are devoted to the proof of the theorems. In section 3 we prove the local existence
result. We use the methods developed in [15] together with some results on the estimates of the solution of
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the Cahn-Hilliard equation [4]. Roughly speaking, we consider the system as a fixed point equation and we
apply the Schauder theorem. This method allows to control the nonlinear terms but a high regularity of the
initial data is required. In section 4, we prove the uniqueness result concerning the strong solutions. There
is no general result concerning global existence for arbitrarily large data even in the monophasic case. The
fifth section is devoted to global existence of solutions for sufficiently small data. Here, the crucial point is to
obtain estimates which balance the coupled linear terms.

1 Governing equations

Many constitutive laws of differential type have been introduced to model the behavior of viscoelastic
fluids. They are derived from molecular or continuum mechanics considerations. We study in this paper fluids
satisfying the Oldroyd constitutive law:

Do
WeD—t+a = 26rD(v). (1.1)

Here v is the velocity field, o is the non-Newtonian part of the stress tensor 7 = 26(1 — r)D(v) — pId + o,
D(v) = (Vv + (Vv)?) is the deformation tensor, We is the Weissenberg number describing the elasticity,
is the fluid viscosity and r the retardation parameter. We can note that 0 < r < 1 express the ratio between
elasticity and viscosity : if r = 0 then o = 0 and the fluid is a Newtonian fluid, and in the case r = 1 the fluid
is called a Maxwell fluid. In this paper, we will assume r < 1. Moreover, in (1.1), £ denotes the following
objective derivative [22]

D 0
D—: = 6—;‘ +v-Vo+g(o,Vv), g(o,Vv)=-W().0c +0.W () + a(D(w).c + c.D(v)),

where a € [—1;1] and W (v) = (Vv — (Vv)?) is the vorticity tensor. All the results of this paper hold for any
value of the parameter a but better results are known in some particular cases. For instance when a = 0 we
can use the fact that Tr(g(o, Vv).0) = 0, see [9, 21].

To the constitutive law (1.1) we must add the motion and continuity equations for incompressible fluids

Re(% +v- Vv) —2div (6(1 = r)D(v)) + Vp= dive, dive =0, (1.2)

where p is the pressure and Re is the Reynolds number. Usually, the velocity satisfies a no-slip condition
v.n = 0 on the boundary (n being the outward normal on the boundary of the domain).

Since we want to study the mixture of two viscoelastic fluids, we introduce an order parameter ¢ describing
the volumic fraction of one fluid in the flow. More precisely, where —1 < ¢ < 1 and ¢(t,z) = 1 if only one
pure fluid is present at the time ¢ and the point . This parameter allows us to obtain a continuous description
of the interface between the two fluids. Considering only the diffusion phenomenon of ¢ at the interface, the
evolution of ¢ is given by a Cahn-Hilliard equation (see [11, 23]):

0 .
Sr — div (BRI =0, p=—a’Ap+F(p).

In this case, p represents a chemical potential derived from the study of the free energy of the fluid, B is
a positive mobility coefficient and « measures the thickness of the interface. Furthemore, this equation is
provided with the no-flux boundary conditions 8,9 = 9,0 = 0. Obviously, this equation is coupled with (1.1)
and (1.2). All the parameters depend on the order parameter, the interface is transported by the velocity and
capillary forces appear in the Navier-Stokes equation (1.2), see [8]. In the case where the two phases have
the same density, after a dimensionless study, we can write the final model in the form (see [9] for a complete



derivation of the model):

% +v- Vo —2div (7(9)D(v)) + Vp - div o = —a*ApVe,
div v =0,
)% . _ 2 !
¥ +v- Vo — div (B(p)Vu) =0, p=—a"Ap+ F'(p), (1.3)
0
6_: +v-Vo +g(o,Vv) +1l(p)o = v(p)D(v),
] 0 .
\ (10(0) = ¥, 'U(O) = 2o, 0'(0) = 09, a—: : = a—le : = 0, Ull" = h Wlth hn = O

We can remark here that we note 1(p) the viscosity resulting from the Newtonian constraint (y = (1 — r)d),
and v(p) that resulting from the viscoelastic constraint (v = rd). Since we consider the cases where 0 <r < 1
then we will always have n(yp) > 0 and v(p) > 0.

2 Main results

2.1 Mathematical background and notation

Throughout this paper, the same letter C' stands for a positive constant which may be different each time it
appears. In the sequel, d € {2;3}, O C R? is a bounded connected open set such that ' = 9 is regular enough.
We will use the following notation: The Lebesgue space LP(Q2) (or more simply LP), 1 < p < 400, with norm
|.|p, the Sobolev space H*(Q) (H*), k = —1,0,1,... with norm ||.||x. We will frequently use functions with
values in R? or in the space of real d x d matrices. In all cases, the same notation will be used.

During the estimates which will follow in the proofs, we will frequently use the following lemma (see [17]):

Lemma 2.1
The application (f,g) — fg is continuous from H?®* x H®2 in H® with

. d
s1 + 892 >0, s=m1n{sl,sz,31+52—§—6}, e > 0.

We can takee =0 if 81 # d/2, so # d/2 and min{s; , s2, 81 + s —d/2} # —d/2.

We now introduce the natural spaces linked to the problem, taking into account the boundary conditions:

9¢
on

_04¢
F_ on

s

® = {(;5 eD() / = 0} and ®, =3 endowed with the norm ||.s,
r

V={weD®)/ divw=0, wr=0} and V;= V" endowed with the norm [|-]|s for s < 3/2.

For s’ < 0, we also use the notation ®4 and Vy for the dual spaces of ®_, and V_g respectively. We will use
the orthogonal projection P of L? onto V; and the Stokes operator A = —PA with domain Vp N H2.

In this paper, we usually use the 0, 1 and 2—contracted products, noted respectively AB, A.B and A : B.
For instance the 2—contracted products of two 2—tensors A and B is defined by

d
A:B= Z Ai,ij,,'.

i,j=1



2.2 Assumptions

The viscosities 7 and v and the mobility B are regular functions of ¢, positive and bounded. More generally,
it will be said that a real function f will satisfy the assumption (2.1) if

f € C®(R,R) with bounded derivatives and there exists f1, fo > 0 such that f1 < f < fo. (2.1)

Concerning the Cahn-Hilliard potential F', we first suppose the regularity of the potential (the positivity is
not restrictive because a physical-meaningful potential is always bounded from below and adding a constant
does not change the equations):

F € C*(R,RH). (2.2)

The other assumptions allows the choice of a classical Cahn-Hilliard potential (F(p) = %4 — “’; for instance):
[F" ()] < Fo(1+[a"™),

there exists Fy > 0 such that Vx € R,
|FO) (2)| < Fo(1+|2]%),

(2.3)
I<p<3 . .
where{ ifd=3 and 1<p<+4o0ifd=2.
0<g¢< +x
VYER, 3F(7)>0,3 R(y) 20/ VzeR, (z—7)F'(z) > Fi(7)F(z) — Fa(z), (2.4)

3 F3 2 0 / Vx € R, F”(JE) Z —F3.
The last assumption is about the boundary velocity. It is known that all the regular vector field definite on
the boundary I' can be prolonged in a divergence free vector field defined on € (see [19]). We consider here
such a raising, still noted h and verifying

he H¥), hm=0onT and divh=0. (2.5)

2.3 Statement of the results
The first stated result relates to the local existence of strong solution:

Theorem 2.1
Assume ug € Vi N H?, ¢g € ®4, 09 € H?, n, B, | and v satisfy (2.1), F satisfies (2.2), (2.3), (2.4) and h
satisfies (2.5). Then there exists T* > 0 and (u+ h, p,0) a unique solution of (1.3) with vg = ug + h such that

ou

we L®0,TVi N H*) N L*(0,T* Vi N H?), o € L®(0,T*; Vo) N L*(0,T*; V1),
)
@ € L®(0,T*; &4) N L(0,T*; ®¢), a_f € L=(0,T*; 8o) N L2(0, T*; 3»),
oo * 2 80 oo * 1

Next, we are concerned with global existence (in time) of the solutions. Such a result is proven if the initial
data are small. For the order parameter ¢ this assumption writes “pq is close to a metastable point w” (i.e.
F is convex near w, see figure 1). We obtain

Theorem 2.2

Let w lies in a metastable region of F. Under the same assumptions than for the preceding theorem, if h,
ug, o9 and @y — w are small enough in their space then the results of the theorem 2.1 hold with T = +c0.
Moreover, ||ul|2, ||o]|2 and ||¢ — w||3 remain small.

For this theorem, the assumptions concerning the mobility B and the potential F' are not necessary. We
must only suppose that the assumptions are verified in a neighborhood of w. In particular, this theorem holds
in the following case (usual in some physical considerations, see [8, 11])

B(z) = (1—-2%% a>0,
F(z) =1 -2 +b((1 + 2)log(1 + z) + (1 — z)log(1 — z)),
forwe |—1;—v/1-b[ U JV1—-01].
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Figure 1: A Cahn-Hilliard potential

3 Local existence of a strong solution

In this section, we prove theorem 2.1. We implement a fixed point argument to show the existence of a
regular solution to problem (1.3) on a small time interval [0, 7*[. The uniqueness of such a solution will be
proved in the next part. Let us rewrite the system (1.3) as a fixed point equation

(v=u+h, 1=n(p),
% — 2div (7D (u)) + Vp = —a2APVE + div & — 5 - Vo + 2div (HD(h)),
divu =0,
Bgo . T ~ o~ _ 2 !
\ 5 ~ 4V BV = div (=9 9), u=-a"Ap+F(y),
oo ~ ~ SO
5 10 Vo +9a(0,0) + Up)o = v(@)D(V),
_ L _ ¢ | _op| _ _
©(0) = o, u(0) =up=1v9—h, o(0)= oo, onl. " on|. 0, wulr=0.
\

Then, it is enough to prove that the mapping (z+h,$,d) — (u+h,p, o) admits a fixed point in a well choosen
space. The proof goes through three lemmas, the first one concerning a Stokes problem with variable viscosity,
the second one concerning the Cahn-Hilliard equation and the third one about the Oldroyd model.

3.1 Linear Stokes equation

For this first lemma, we will consider a Stokes problem with variable viscosity. We study the homogeneous
case (null velocity at the boundary) and the non-homogeneous boundary conditions will be treated in the fixed
point part, section 3.4:

%—? —2div (7D(u)) + Vp = G4,
divu =0, (3.1)

w(0) = ug, ulr =0.

The assumptions that we will introduce for 77 and for the source term G; will be justified thereafter.

Lemma 3.1
Assume G; € L2(0,T;H1), 0;G1 € L2(0,T;H_1), G1-0,G1 € LI(O,T;LI), Gl(O) € LZ, V’ﬁe LOO(O,T;H2),
0y € L2(0,T; L™), ug € Vy N H? and that 7 satisfies 0 < 51 < i < 7ja.



Then there exists a unique solution (u,p) of (3.1) such that

2 2

ul? lul? du du
L0, 1;vinm2) Tlulli20,7v, nms) + ot + ot
L"°(0,T;V0) Lz(O,T;Vl)
oG, |1
< (ol NGl | S 1161 A0
L2(0,T;H-1)
2 o2 ol
|G1(0)|2>||V77||L°°(O,T;H2)a Bt .
L2(0,T;L )

Remark 3.1
e It is important for the sequel to observe that the function ki may be chosen to be non decreasing with
respect to each of its variables. Moreover this function k; does not depend on T.

o Assumption G1(0) € L? can appear superfluous since it is known that if we have G; € L*(0,T; H') and
&Gy € L*(0,T; H™') then G is continuous in time, in values in [H~", H']; /, = L*. Nevertheless, this
estimate is not independent of T and would thus imply a dependence of k1 compared to time.

o Concerning the assumtions, it is interesting to note that G; € L?(0,T; H') and 8;G, € L?*(0,T; H™1)
do not imply Gy - 8;G1 € L*(0,T; L') since H~! x H* ¢ L*.
3.1.1 Proof of the lemma 3.1

We prove this lemma in several steps. Since the regularity required on velocity is high, we will not be able to
directly obtain estimates so strong. We thus start by having weaker estimates on u and d;u, then by regularity
of the Stokes problem (see [7]), we will be able to increase the regularity.

e Estimate of u in L*°(0,T;V;) N L2(0,T;V; N H?)

We use the Galerkin-Fadeo approximation method and we expose only formal calculations here. We
multiply the Stokes equation by Au where A is the Stokes operator (let us recall that this operator is defined
by Au = —Au+ Vr € V, for u € V3). Developing div (7D (u)) we get

ou

—.Au—/ Q(Vﬁ.D(u)).Au—/ﬁAu.Auz/Gl.Au.
o Ot Q Q Q

After integrations by parts, the assumption (2.1) for 77 shows that we have the following estimate

d (|Vul3 = 2
— < .
dt( 5 + 71| Aulz < /QGl Au

For the last term, regularity results for the classical Stokes problem [26] and the Poincaré lemma [1] allow to

write
‘/ﬁVw.Au = ‘/WVTNI.A’LL
Q Q

< C|Vuls| Villoo|Aulz < T 4uf} + CIIVA3Vul3.

+

+‘/Q2(Vﬁ.D(u)).Au

/ nVr.Au
Q

< |mlr2 /R Vi oo| Aul2,

The other terms are treated in the same way and we obtain the following inequality:

d Vu 2 771 ~
(T8 + D < o6 + IR ).
The Gronwall lemma implies the first estimate
=2
IVul2 0.1y < (Vuol3 + ClGHI2 o0 oy e T osn) (3.2)

and after a time integration

1AulZ 2 0,1v) < CUVu0[3 + G oz + IV 0t IVl 01570 (3.3)



e Estimate for the time derivative 8;u in L*°(0,T;V,) N L%(0,T; V;)
By deriving in time the Stokes equation (3.1) we obtain a new Stokes equation verified by w = dyu:

) .
%—t — 2div (7D (w)) +V% aaGl +2div (%D@)),
divw =0,

w(0) = Oul PGi|,_, + 2Pdiv (7D(u))|,_, € Vo,
at 0 t=0 t=0

| wlr = 0.

By formally multiplying this equation by w, the Korn inequality [16] allow to write

d (|wf ~ 2 9Gy
o (Ez <
dt( L) wmiwal <o |52

and finaly by using the Poincaré lemma and the Young inequality, we have

on
ot

|D<u)|2|D<w>|2)

Iho ||1+‘

o0

d [ |w]} 6G1 27| 1o 12

(=2 < adl .

o () + Dvwg <o |2 |+ |52 vus

After time integration,
oG ||?
Il + V00 ry < © (lw@ + | %52
L2(0,T;H-1) (3.4)

-5 LZ(OTLw)nwuim(o,T;VO))-

e Estimate for the pressure p in L?(0,7; H'/R) N L*°(0,T; L?/R)
In order to use the regularity of the Stokes operator, the following stage consists in obtaining regularity on
the pressure term. In order to isolate this term, let us write the equation (3.1) in the following form

Vp =Gy + 2div (7D (u)) — w.

Since G1.0;G1 € L*(0,T; L"), we can write

Gr ()2 :G1(0)2+2/0 G (5). 257 (5)ds.

This estimate becomes

0G
Gilimio 0 < 162008 + 261, 28

Li(0,T;LY)

The fact that the constants appearing in this estimate are independant from T is very important and will be
used below. The preceeding results concerning the regularity of u and w allow to prove that

Vp € L*(0,T; L*) N L>=(0,T; H™Y).

According to the Poincaré-Wirtinger inequalities (see [26], p. 14-15), we deduce

0G1
I e+ I o < O (12O + o o |
L1(0,T;L
+ ”u”%"O(O,T;Vl)”vmliZ(O,T;HZ) + ||u||%°°(0,T;V1) (3-5)

oo zsvarnizey + ol zovey + ||w||iz<o,T;V1>),

where the constant C' = C(Q) does not depend on T'.
7



e Estimate of u in L*°(0,T;V; N H%) N L?(0,T;Vy N H3)
We again write the Stokes equation (3.1) in a different form:
G 1 1 2_
—Au+ V(g) = Tl —=<w—p \Y% (:) + :VnD(u)
n n n n n

If we denote by r the right member of this equality then we can use the known properties on the Stokes
operator [7] and to show in particular that w € L>(0,T;V; N H?) N L(0,T;V; N H?) with the estimates

lull Lo 0,73vanm2) S IPllzeo,7522),  ullzo,mvinee) < I7llLeco,z;m1)-

Let us evaluate the norm of r in L>(0,T; L?) and in L2(0,T; H'). Noticing that G1, w, p and D(u) are in
L*>(0,T; L?), the fact of multiplying them by bounded functions like 7 and its derivative does not deteriorate
their regularity. It results from it that r is in L>(0,T; L?).

To obtain the regularity in L2(0,T; H') of 7, we can show that the gradient (in space) of r is in L2(0,T'; L?)
by the same methods. We deduce
||u||%°°(O,T;VlmH2) + ||u||%2(0,T;V10H3)

0G
< c(|G1<o>|§+ 1

G5

+1G1lZ20,m5m1) + Wl oo 0,710 + 1wllE20,77v4)
L1(0,T;LY) (3 6)

+ ||V7~I||%°°(0,T;H2)(||P||i°°(o,T;L2) + ||p||i2(0,T;H1)) + +||Vﬁ”i°°(0,T;H2)”p”i2(0,T;L2)
+ ”VTNIH%M(O,T;H?)(HUH%"‘J(O,T;W) + ||U||i2(o,T;VmH2)) + +||V77||4Lc°(0,T;H2)||U||i2(o,T;V1)>

The estimates (3.2), (3.3), (3.4), (3.5) and (3.6) conclude the proof of the existence part of the Stokes lemma.
For the uniqueness, the equation being linear, it is enough to notice that if the initial conditions vanish, and
if G1 = 0 then the preceding inequalities prove that u is identically zero.

3.2 Cahn-Hilliard equation

In this second lemma, we will consider a Cahn-Hilliard equation with source term:

%0 div (B@)Vm) = div (G),

p=—a"Ap+ F'(p), (3.7)
_ dp| _9op| _

90 =¢o, - "o F—O-

As in the “Stokes” lemma, 3.1, the assumptions on the data will be justified in the sequel.

Lemma 3.2
Assume G5 € L%(0,T;L?), divGs € L?(0,T; H?), Go.n = 0 on T, div 8;G> € L%*(0,T; L?), div G2(0) € L2,
o € ®4, B satisfies (2.1) and F satisfies (2.2), (2.3) and (2.4).
Then there exists Ty > 0 such that the problem (3.7) has a unique solution ¢ on [0,T}[ verifying
2 2

Oy Oy
om0 zreany + ooz, +H— |2
L% (0,T1;24) L2(0,T132e) Ot || Lo (0,11:00) Ot || 20,1392
G |?
<t (lllf 1 div Gallomys Gallo ey | v 2522 ldiv (G20 ).
L2(0,T;L2)

Moreover, the time T} is given by
. 1 . .
7y =min {7, |, with A = an(lgall | v Gl )
Remark 3.2

Like in the preceeding lemma, it should be noticed that functions ko and keo are non decreasing with respect
to all variables.



3.2.1 Proof of the lemma 3.2

Exactly as in the proof of the above lemma, strong regularity that this lemma request will impose us to follow
several steps.

e Estimate of ¢ in L>(0,T; ®,) N L?(0,T; $3)
We choose p as a test function in the usual weak formulation of the problem and we obtain directly

- [ aiv () Vi = [ div (Gan

By definition of u, integrating by parts and using the assumption B; < B:

a P G
& (Sive+ [ o)) + Zvu < 1-i6al

We use the following result (see [4]): under the almost-convexity hypotheses (2.4) we have

a2
1t > Bt + clagl + oGt + [ F@) - CRmlen),

where the average m(y) = [, ¢ is conserved all along the time [12]. We deduce:

d (a? 1
& (5108 + [ Pe)) + 0 (1Nl + [ P +1A0B+IVuB) < -iGalt + CRalm(e). (9

The regularity which we have obtained on u indicates that we must have also more regularity on ¢ (since
u ~ Ayp). This intuitive result requires the additional assumption (2.3) (under-polynomial growth). With this
condition, we can show that

IVA@[Z < Co(|Vul3 + [Vl + [Vel5P 72| Apl3). (3.9)

e Estimate of ¢ in L>(0,T;®,) N L2(0,T; ®4)

We choose now A2y as a test function in the Cahn-Hilliard equation. This operation is completely justified
because we make a Galerkin method, considering in particular a base of eigenvectors of —A in ®, (see [4, 9]).
After integrations by parts, we obtain

(lAcplz) /dw M)A%p:/gdiv (Go) A2

Using the definition of the potential yu, we have

—div (B(p)Vp) = a®B(p)A’p + a*B'(p) Ve - VAp — B'(9)Vp.VF' (p) — B(p) AF (¢). (3.10)

We reveal the quantity a?B;|A2p|3 in the left member and the Young inequality allows us to write

i |Apl3 23, A2 2<a231 A2012 1+ C(l div (Go)2 21U Awl2 2 1UF (012 + IAF (o)
g\ ) T BiA el < — =A% + C(ldiv (G2)l; + Vel VARl + VRIS [VE (9)]; + [AF (#)]3)-

Concerning the estimates on the potential F', we write
VF'(p) = F"(p)Vyp and AF'(p) = F"(p)Vy - Vo + F"(p)Ap,
and using the assumptions (2.3), we deduce

IVE'(9)f5 < 1F"(9)2|Vel3 < CL+ [02272)|Vel3 < O+ [IVelli” ) Vel
[AF ()3 < CA+ V@I IVell + C(L+ IVl ) A3,



The energy estimate on |Ap|2 becomes
d .
% (18682) + 02311221 < Calal + Claiv (Ga) 3+ IVEK(IT1R) @11
where K is a continuous non decreasing function such that (0) = 0.
e Estimate of ¢ in L>(0,T; ®3) N L?(0,T; ®5)

In this paragraph, we obtain an equation of the same type of a higher order. Taking —A3¢ as a test
function, we deduce

da (IVASO@

> - / Vdiv (B(p)Vp) - VAZp = / Vdiv (Gs) - VAZp.

As previously we develop V div (B(¢)Vyu) (see (3.10)) to make the term o2 B;|VAZ2¢|3 appear:

—Vdiv (B(p)Vp) = o’B(p)VA%p + o’ B' (9)VeA?p + o® B" (0)VeVe - VAp + o*B'(9) Ve - VAp
+a®B'(p)Ve - V*Ap — B"(p)VeVp.VF' () — B'(p) V0.V F' ()
— B'(p)Vp.V*F'(p) — B'(9)VAF'(p) — B(p) VAF'(p).

Using Young inequality, we obtain

i(|VA‘P|%> + o’By

(55 SHVAZGR < O (Vdiv (Go)l3 + [Vl [A%13 + [Volt, [V AgR

+ V202 IV A3 + [Ve|2, [V Apl3 + [V o [VF ()5
+ IVl IVF ()1 + Vo2 V2E (9)]3
+ Vo2 |AF (9)]5 + [VAF' ()]3).

We use the sobolev injection H? C L*. Like above, we develop the potential and use the assumptions (2.3).
The last term is the only one which can bring a linear term. It is estimated by

VAF'(p) = FY(9)Ve(Ve - Vo) + 2F" (9)V¢ - Vo + F"(0)VpAp + F"(9) VAy,
IVAF'(9)[5 < [F@ ()5 Vell + 217" (0) 2 V20l3| Vol + 17" (0) 26| Veola | A¢l3 + [F" () 5V A3
The same type of arguments that for the preceding estimate provides the following estimate

d

P (IVAwlg) +a?B1|VA%g|3 < Ca|VA@[; + CV div (G2)I3 + [IVelZE(IVell3) (3.12)

where K is an other continuous non-decreasing function with £(0) = 0.

e Estimate of ¢ in L (0,T; ®4) N L?(0,T; $¢)
To obtain more regularity, we take Ay as a test function, we deduce

2 12
1<M) —/Adiv (B(cp)Vp).A3<p=/Adiv (G2).A%p.
dt 2 Q Q

As previously we develop A div (B(¢)Vu). Writting only the significant term (see [10] for complete computa-
tions), we obtain

—Adiv (B(¢)Vu) = a>B(p)A%p + a®B'(9)Vp.VA%p — B(p) A’ F'(p) + ... (3.13)

After integration, the first term gives a®B;i|A%p|3 on the left member of the estimate. Using the Young
inequality again, we deduce

d [|A2p|? o?’B i
(B2 + SN < € (A div (Go) + Ve T A%E +[AF () + -
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We detail here how the significants terms are treated, the other being more regular. We use an integration by
parts for the second term

a?B|A%|3
4

Vo2, [VA%p[3 < ClIVyl3|A%0|2]|A%p|, < + C||Vyll3

whereas the last term is estimated by

A?F'(p) = F®) () (Vo - V)2 + 4F D () Ap(Vep - Vi) + 2F D () V. (V20 - V)
+4F" (©)VAg - Vo + 2F" (0)V?¢ : V2o + F"(0)(Ap)* + F"'(9) A%,
|A2F'(9)3 < CF® (@)IZ IVl + [FW (@) 2 IVells + [F" ()12 1V ells + 1F" (0) 2, 1A%0]3).

The same type of arguments that for the preceding estimate provides the following estimate
d .
% (18%08) + @2BLIA% < Cola?ol + Cladiv (Go) + IVRIRK(IToIR) (3.14)

where K is an other continuous non-decreasing function such that (0) = 0.

e Estimate of 8:¢ in L2?(0,T; ®,)
It is easy to deduce an estimate on the time derivative d;¢. We write
Oy . .
B = div G2 + div (B(p)Vp)).
A classical result on the Cahn-Hilliard equation show that the average of 0y is zero [12]. With the Poincaré
inequality and using the equation (3.13), we find:

2
< Cs|A%pl3 + Cr|A%¢f; + ClAdiv (Ga)I5 + [IVellsK(IVell3)- (3.15)
2

dy
A—LT
‘ ot

A

ot

5.

2

Adding the six estimates on ¢

(2C3 +2C3(Cs + o> B1C7/Cg)) /C1 % (3.8)
+ 2 % (3.9)

+ 2(Cs + a®B1C7/Cs) x (3.11)

+1/Cy x (3.12)

+ 2a°B; x (3.14)

+ a*B?/Cs x (3.15),

and noting that the norms ||¢||3 and ||¢||2 are equivalent to |V|3 + |Ag|3 + |[VAp|2 + |A2¢|2 and |Vy|3 +
|Ap|2+|VAQ|Z + |A2p|2 +|VA2p|3 + |A3 |2 respectively (use the laplacian regularity, see [27]) we find finally

y'(t) + Cz(t) <y(OK(y() + || div (G2)|I3 + CFa(m(0)), (3.16)
where

2 2 / 2. 2 / d¢|
vt = llelli + 35 | Flo) and () = lellf+ 35 | Flo)+| 5|

A simply study of this inequation gives the existence of a time 77 > 0 such that y(t) < M for all t < T} (i.e.
@ is bounded in L*>(0,T7;®4)). Moreover M and T are given by

M = (y(0) + || div (G2)l|L2(0,r;m2) + TCF2(m(po)))e’,
) 1
T1 == mzn{T, m}

11



To prove this result, consider the set I = {s € R / Vit € [0,s] y(t) < M}. Since y(0) < M, it’s clear that
0 € I. Assume that there exists s < T} such that s € I. For all ¢t € [0, s], we have y(t) < and since K
increases, we deduce

y'(t) <y@)K(M) + || div (G2) |13 + CFa(m(go))-

Using the Gronwall lemma, we obtain
y(t) < (y(0) + || div (G2)|L2(0,1:2) + TCFa(m(gp0)))e”™ ™) < M.

By continuity, it results that I is open in [0, T1[. It’s clear that I is closed, so that [0,Ti[C I.

Now, integrating in time the inequality (3.16), we deduce an estimate of ¢ in L2(0,T;; ®¢) and an estimate
of 8“0 in L2(0, Tl; ‘I)Q)

e Estimate of 8;¢ in L°°(0,Ty; ®o)
Since 0y = div (G2+B(p) V) we prove here that the previous estimates show that 8, € L°°(0,Ty; Po).Using
the estimate (3.10), we have

2

0 . .
‘—“” < C(|div Gof2 + | div (B(o) V) 2)
2

ot

< C(|div Gaf3 + IVl + [IVel3E(IVel3))-

Using the fact that div G € L?(0,7T; L?) and that 8; div G2 € L?(0,T; L?) we obtain a bound for div G5 in
L>(0,T; L?). We write:

¢
div Go(t)? = div G2(0)? + 2/ div Ga(s) div 352 (s)ds,
0
we integer on Q and take the supremum for ¢ € [0, T7:
2 . 2 e 12 e
1div G|z 0,;22) < 1div G2(0)f; + [1div G2l 0,72y + || div =5~ :
L2(0,T;L2)

Finaly, we have ;¢ € L*°(0,T1; ®¢) with the following relation (use the monotony of the function K)
o 0Gs ||’
Ha—f <C (I div G2 (0)[3 + [| div GallZ2(0,7;z2) + H div —==

L%(0,T1;®0) ot

L2(0,T5L%) (3.17)
+ ||V90||%°°(0,T;<1>3) + ||V90||ioo(o,T;<1>2)’C(||V90||%°°(o,T;<1>2))>-
where the constant C' is independent of T'.

This inequality concludes the proof of the existence of a regular solution to the problem (3.7). It any more
but does not remain to prove the unicity of such a solution:

e Uniqueness
Consider ¢; and ¢, two solutions of the problem (3.7). Let ¢ = 1 — 2. We make the difference of the
two equations then we multiply by —Ay. After straightforward computations, we have

d (|Vel3
at\ 2

)—I—oz2 /Q(B(gm) — B(2))VAp; .VAp + o? /Q B(p2)VAp.VAp

= [ (BF"(p1) - BF"(02)Vi1.92¢ - [ BF(p2)V0.0p = 0.
Q Q

We use the bounds on B and on its derivative (assumption (2.1)):

d [|Vl?
¢ (' ¢ '2) Q2 BUVAGE < C(1plo | VAR | VAG + [¢locl Vot o[ VAL + [Vl VA@]).
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To treat the first two terms of the right-hand side member, we can use Agmon’s inequality [2]:

a231

|loo |V APz < [Vels *[VA@* < ;

VA3 + C|Vyl3.

Estimates being obvious for the other term (using the Young inequality), we deduce

d (I[Ve3\ o*B
%(I ;P|z> + 5~ VAG < C(IVell3 +1)|Vel:.

To conclude, it is enough to notice that ||Ve1||2 € L'(0,77) and to apply the Gronwall lemma: the initial
conditions on ¢ being zero, we find ¢ = 5.

3.3 Constitutive law

We turn now to the study of a problem associated to the constitutive Oldroyd equation for the stress tensor.

%_‘t’ + @+ h)-Vo +g(o,V(@+h)) +1(@)o = Gs, (3.18)
a(0) = oy.

We obtain the following lemma

Lemma 3.3
Assume Gy € L™(0,T; H') N L'(0,T; H?), & € L®(0,T;V; N H2) N L'(0,T;Vi N H%), § € L®(0,T; ®3),
oo € H?, h satisfies (2.5) and [ satisfies (2.1).

Then the problem (3.18) has a unique solution o such that

< ks (llooll3, 1G5 0,7y 1G3l1L1 0,72y 1l Lo 0,750 )

o] +H5"
o||Le(0,T;H2 v
( ) Ot || oo (0,111 (3.19)

1allZ1 0, zsvinmsy 1Bl3, 1211 (0,7:05))-

Remark 3.3
In fact, the solution o is not only L>(0,T; H?) but C([0,T]; H?). Indeed, the assumption on the velocity field
@ € L'(0,T;Vy N H®) implies that the solution of the system
d ~
LUt 5:2) = @+ K6, Ut 532))) in 10, T,
U(s,s;2) =z in Q,

is continuous in the two first variables, H® in space. Futhermore, there is an integral representation (see [3]):

t
o(t,z) = oo(U(0,47)) + /0 (Gs —g(o, V(u+ h)) = U(p)o)(s,U(s, t; z))ds.

This formulation enables us to deduce that o € C([0,T]; H?). In addition, by adding the following assumptions:
u € C([0,T); H?) and G3 € C([0,T); H'), it is easy to show that 8;0 € C([0,T]; H').

3.3.1 Proof of the lemma 3.3

To simplify the notations we note during this proof ¥ = w + h so that v is a vector field defined on 2, with
free divergence and tangent at the boundary.

The existence of a unique solution to (3.18) follows from the application of the characteristics method.
It should be noticed that this method is generally used when the velocity field is of C! class. Let {0y }nen
be a sequence in C!([0,T]) such ¥, — ¥ in L'(0,T;V; N H®) and let {00,,}nen be a sequence in C3(f2) such
that o¢,, — 0o in H?. For each n € N, the characteristics method give the existence of a unique solution o,

13



verifying (3.18). It is enough to prove the estimates (3.19),, (index 'n’ being to indicate here that the estimates
considered are those relating to ¢,) then to perform the limit when n goes to +oc.

e Estimate of o, in L>°(0,T; H?)

During this paragraph, we note (.,.) the inner product in L? and < .,. > the one in H?. Taking the inner
product in H? of the equation (3.18),, with o, we obtain
Oon
ot
Classical computations using the orthogonal property (v, - V7,7) = 0 (see [9]) show that:

< ,On >+ < Up - Vou, 00 >+ < g(on,VUp),0n >+ < UP)op,0n >=< G3,0, > .

| <Un-Von,on >| < 0“57»”3”‘771”%-
In the same way, we obtain (see for instance [9, 15])
| < g(on, VUn), 00 > | < Cllonllsllonll3-
Concerning the term < [($)on, 0, >, we write
<UP)on,0n > = ((P)on, on) + (V(UP)on), Van) + (VV(U(P)on), VVayn),
> l1||0n||§ +U"(@)VE 0n,Vay) + (l”((,Z)(VQZ)QO'n,VVO'n)
+ ('()VV@ 04, VVa,) + 2(I'(@)VEVoy,, VV0oy).

Using Sobolev injections, we can obtain the following estimate

d (lloall3
dt 2

This can be written

) +lillonll3 < CURlls + [IVEl2 + IVRIDlIonlls + |Gsll2llon]l2-

d|lonll2
dt
An application of the Gronwall lemma give the result concerning the estimate of o,,:

+lllonllz < C(IIBalls + V]2 + IVEIE) lonll2 + IG3]l2-

Un . h Ve . val?
||0n||L°°(0,T;H2) S (||0’0||2 + ||G3||L1(O’T’H2))60(”u ||L1(0,T,V10H3)+” ”3+” (p”Ll(O,T,<1>2)+” ¢||L2(O,T;<I>2))_

e Estimate of 8;0,, in L>=(0,T; H')
For the time derivative estimate, it is enough to isolate this derivative from the equation (3.18):
dop
ot
then to notice, by using the lemma 2.1, that we have

= G3 - 17n -Vo, — g(ana Vﬁn) - l({ﬁ)an

[0 VoL o,r;m1) < CllUnllze0,15vinE2) |00l (0,1 H2) 5
lg(on, VOR)| Lo (0, 75m1) < CllUnllLe(0,1vinm2) o0l Lo (0,112,
12(P)onll Lo (0,75m1) £ C(1+ IVl Lo (0,500))|onll Lo (0,7512),
in order to obtain the estimate on 0;0,:
Oon
ot

<Gsllpe(o,7;m1) + C(l + |@nl| oo (0, 15vinE2) + |RIl2 + ||V¢||Lw(o,T;q>o)) lonllze(o0,r;m2)-
(3.20)

Lo (0,T;H?)

e Perform the limit
The estimates (3.19),, prove that a function o exists with
on =0 in L°°(0,T; H?) weak-x,
do do .
8—tn — 5 0 L%(0,T; H') weak-*,
on — 0 in L*(0,T; HY) p.p..
These convergences allow us to perform the limits in (3.18),. To obtain the estimate (3.19) for o, we take
into account the lower semicontinuity of the norm with respect to the weak-x and weak convergence. The
uniqueness assertion stems from the fact that (3.18) is linear in o.
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3.4 Existence proof in theorem 2.1
Assume that the initial data are regular
Vo = Ug + h, UOEV1I'7H2, h€H3,

$o 6@4,
og € H2.

We define the Banach space X7 = C([0,T]; L?) x C([0,T]; L?) x C([0,T]; L?) and for arbitrary T' > 0, M; > 0,
My > 0 and M3 > 0, let us introduce the subset

Ry (M, My, M3) = {(u + h,p,0) € X such that

0
u € L>®(0,T; Vi N H?) N L2(0,T; V; N H?), a_:: € L>(0,T; Vo) N L2(0,T; V1),
0 .
P € LX(0,T;84) NL(0,T5 %), £ € L(0,T;%0) N L2(0,T; %),
[’} 2 60 (e’ 1
u(0) = up, ©(0) = o, 0o(0) = oy,
oull? oul|?
(w12 o0 (0.7 2y + [[wl|320 1 3y + || = — < My,
L*(0,T;ViNH?2) L2(0,T;ViNH3) ot L(0.T:Va) ot L2(0T5Vh)
do|? do|?
ol + 0100+ | 52 +|5 <,
L (0,T;%0) L2(0,T;®5)
oo
lo||ze(o,1;m2) + || 27 < Msyp.
ot
L (0,T;H?!)
We consider the application
0 : RT(Ml,MQ,M;g) — Xr

(@+h,,0) — (uthypo0)
where u, ¢ and o are the unique solutions of (3.1), (3.7) and (3.18) respectively, with
1=n(%),
G1 = —a?A@VG + dive — (u+ h) - V(@ + h) + 2div (n(@)D(h)),

G2 =—o (u+h),
Gs = v(@)D(u + h).

A fixed point (v = u + h,p, o) of O is clearly a solution of the problem (1.3). We will apply the Shauder fixed
point theorem. The three following points thus should be verified:

o (i) Ry(M;, M, M3) is non empty for My, My, M3 large enough and for any T,
e (ii) the existence of T* > 0 small enough with @(Ryp- (M7, M2, M3)) C Ry« (M7, Mo, M3),

e (iii) Rr- is a convex compact subset of X and © is continuous.

Step (i) Let u* and ¢* be the unique solutions on R* of the following problems

661: —Au*+Vp* =0, divu*=0, u*(0)=u, u*lr=0,
o TAY =0 ¢ (0)=w, —- LT o |,

15



We easily show that there is a constant J such that for any time 7' > 0 we have

2 2

N N ou* ou*
10 o4y + ||12(0,T;VIHH3>+\W +|% < J|Aw,
L (0,T;Vo) L2(0,T;V1)
X% o¢" ? 2
1o o man) + 6% B0z +H +' < Jllol.
(0.T54) (0.T:e) Ot || oo (0,7500) Ot | 12(0,1:02)

If we choose My > J|Aug|3, My > J||@ol|3 and M3 > ||oo||2 then (u* + h,¢*,09) € Ry(My, Ma, M3). So, if
M, M and M3 are sufficiently large then Ry (M, Ma, M3) #  for all T > 0.

Step (ii) This step breaks up into two parts. In the first one, we obtain estimates on the source terms
(1, G2 and G5 so that we can apply the lemmas 3.1, 3.2 and 3.3. In fact, we will show that the sources terms
are a little more regular in time than wath we require in each lemma. This will make it possible to set up the
second part of the step which consists in finding M7, Ms, M3 and T* such as Ry« (M;, M,, M3) is stable by
the application ©.

Estimate of G1: The regularity which is required on G; in the lemma 3.1 is:

oG,
ot

e L'(0,T; L") et G1(0) € L.

G1 € L*(0,T; HY),

0G,
ot

€ L*(0,T; H™),

Gy -
Recall that G is given by
Gi1 = —a?AVG + dive — (u+ h) - V(@ + h) + 2div (n(@)D(h)).
We assume that (@ + h,$,o) € Rr. Using lemma 2.1, the product A@gV @ verifies
IABYEI a0z < OT A 0,111 IV B e 0,72y < CTME.
The same method allows us to verify that the other terms are regular too:

| div (|70, 7,111y < CT Ms,
1@+ h) - V(@+ h)I120,7;m1) < OT [la+ hllpeoo,1502) < CT (M7 + [|h[3),
| div (@)D (W) 720,7581) < CT 10D 700 0,712 [1BII3 < CT (1 + M3) |RJ3

Remark that for the last inequality, we use the following relation

@I = [0(@)3 + 10" (D)VEL3 + In" (@)VEVE[3 + In' (2)VV I3
< nl3e + '3 V@I + 1" [5| V2l5 + In'[5V V@3 (3.21)
< C(1+ M3).

We deduce finally Gy € L?(0,T; H') with
1G1Z20,7,mr1) < CT(M7 + M3 + My + [|Bll3 + [|R]I3 + MZ||A][3). (3.22)

For the time derivative, we have by definition

0G1 64,0 9 op 6_ op
T 6t Vo —a*Ap V_(')t + div 5 + 2div ( (@ )6t D(h)) 529
6u ou ’
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Many terms are much more regular than what is required. If we write 8;G; = f + g where f corresponds to
the terms of the first line of (3.23) and g corresponds to the terms of the second line:

F=-a2A22 950205 22 1 aiv 2% Loy ( @ )%‘Pp(h))

ot ot ot t
ou ou
g——EV(u%—h) (u+h)V§

The terms of f will be not only H~! but also L?, what will facilitate the estimate of the product Gy - f. Start
with the estimate of f in L2. We use like previously results of interpolation and products of Sobolev spaces
which make it possible to affirm that

2

Bgo 55 o~
6t Vo < CH ot ||v90||%°°(0,T;H2) < OM3,
L2 (o,T;LZ) L2(0,T;L?)
o¢ - 8
AG V=2 < cﬁnwu%w(o,m) 5 < CVTM3,
Ot || 12(0,1512) ot L4(0,T;12)
oz |
div — < CT < CT Ms.
Ot || 2(0,1512) L (0,T;HY)

Developping the term 2 div (1 (@)0;@D(h)), we find
05 2

\ av (152 0w)

For f, an estimate of the following type was obtained (we indicate here the dependence of each constant
because it is essential to observe that the constant in front of M2 depends neither on time 7', nor of constants
Ml: M27 M3'):

< CTMZ||h||3 + CVT Ma||h|2.
L2(0,T;L?)

11 72(0,7;22) < CQ)MZ + (VT +T) C(2, My, Ma, M3, ||Rll3).
The terms of g are estimated on the following way:

2 2

ou

‘ —.V(@+h) < CTH a+h < CTM; (M + ||h|3),
ot L2(0,T;H—1) Lo(0,T;L?) Lo (0,T;H?)
au > oul
(@ +h).V < CT|a+h — < CT(M;y + ||h||3) M,y
0t |10, i) L= (0,75m2) 1| O Nl Lo 0,7;1-1)

We find:
917200, 7,m-1) < CTMi(M; + |h[[3)-

Adding the estimates concerning f and the estimates concerning g, we obtain 8;G; € L?(0,T; H™!) with
the inegality:

[,

5 < C(Q)M; + (VT +T) C(Q, My, My, Ms, [|hl3). (3.24)

L2(0,T;H-1)

The product Gy - ;G is written Gy - f + Gy - g. Since Gy € L?(0,T; H') and f € L?(0,T; L?), it is clear
that Gy - f € L'(0,T; L') with the estimate:

IG1 - 101501y < ClIGllL20,7500) |1 FllL2(0,1522) -
( )

Concerning the product G - g, we remark that
ou ou
G1 g—b(at,u-i-h,Gl)-i- (U+h, at’ Gl)
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where b(u,v,w) = (u.Vv,w). If u € vg then this trilinear application verifies b(u, v, w) = —b(u,w,v)

ou ou
g — — i -bla — ) e LY0,T; LY).
G g b(at,Gl,U+h) b(u+h,G1, 8t) € (0, ) )

We deduce the following estimate

0u
IG1 - gllLro, 721y < C'\/THa

IVG1|L20,1302) U + h|poe (0,100 H2)
L°°(0,T;V0)

< OVTMa||G1 || 120,71 -

Adding the estimate of Gy - f like that of Gy - g, we find:

< C||G1||L2(0,T;H1)(\/TM2 + 1 fllz20,7522))- (3.25)
L1(0,T;LY)

Concerning the estimate of |G1(0)|3, we could write it like a direct consequence of the estimates of G in
L2(0,T; H') and of 8;G; in L?(0,T; H !). These estimate will be dependent on T', which we do not wish here
(see the remark 3.1). We prefer to write:

G1(0)[3 < Clllolls + llooll? + lluollz + 1Al13 + Iall3lluol F + IRII3 + lleolI3IIRIIT).- (3.26)

Estimate of G2: For the source term of the Cahn-Hilliard equation, the lemma 3.2 require:

Gy € L*(0,T; L?), div Gy € L*(0,T;H?), Gamn=0 onT,
dGy
ot

div € L*(0,T;L*) and div G2(0) € L%

Recall that G5 = —% (U + h), so div (G2) = —(u+ h) - V@. It is clear that if (u + h,$,5) € Ry then all these
conditions are satisfied. More precisely, we have

”G?”%?(O,T;L?) < CT”””%w(o,T;m)||‘P||ioo(o,T;H2) < CTMi M,
| div (G2)l32(0,7,m2) < CT N0l Z 00,752 IV @I 0 0,7;102) < CT M1 Mo,

ov 2 dvl?

Yy <or|ZY Vo2 e g pogray < CTMy Ma,

H ot ” L2(0,T;L2) ' ot L°°(0,T;L2)|| Pllzeo.ie) < e (3.27)
ol dl?

HU-V— < OVToll} o 0 15182 || 5 < CVT My My,
0t llz2(0,7:22) 0t llLa(o,r;m)

|div G2(0)[2 < C(luol2 + |1[3)loll3.

Estimate of G3: Finaly, for the third source term appearing in the lemma, 3.3:
Gs =v(p)D(u + h),
we have, for (r,s) = (o0,1) or (r,s) = (2,2), the inequality:

G312 r0,75m5) < W@ e 0,750 ID @I 0,751y + C W@ 2w 0,7512) D (B3
< M@ 0,712 (Ma + [1AI[5)-
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To control the norm of v($) in H? we use the same method that for n(p) (see (3.21)), we obtain
I(@)l; < C(1+ M3).
We deduce that if (@ + h,$,5) € Ry then G3 € L>®(0,T; H') N L?(0,T; H?) with

1GslILee 0,751y + 1G5l L0, 732y < C (1 + MZ)(My + [|A][3). (3.28)

To apply the three lemmas, two other remarks are necessary. First of all, we must check that if (u+h,p,5) €
Ry then V@ € L>*(0,T; H?) and 8, € L%(0,T; L™) (these assumptions are necessary in the lemma 3.1 to
show that 77 = n(®) is regular enough). We have clearly

||V§5||%°°(O,T;H2) S CM27
and for the second estimate, we use an interpolation result:
[L(0,T; o), L(0,T; ®2)}1/4 = L¥/*(0,T; L),

which implies 8;¢ € L%(0,T; L™) with

2 2 85 1/2 3/2

ot

9¢

0% 0%
ot

< T4
- ot

L2(0,T;L°°)

<CTY4
L8/3(0,T;L®)

< CTY*M,.
L2(0,T;®y)

0%
ot

L*(0,T;%®0)

The second remark comes from lemma 3.2 in which we saw that if the function G is defined on [0, T] then
the solution undoubtedly only exists until a time 77 < T'. To avoid this problem, it suffices to choose 7" small
enough. Indeed, if T verifies:

1

<
- k20(||900||Z,CTM1M2)

T (3.29)

then using the inequality || div G2||%2(0’T; H2) < CT M; My and the growth of kg in each variable, we have

1 1

T< . =,
= Foo(llgolB 1 GolBagg gy A

Henceforth, we will take T small enough to verify this condition (3.29) and we will be able to thus apply the
results of the lemma 3.2 on [0,7] as well in dimension 2 and in dimension 3.

Applying the lemmas 3.1, 3.2 and 3.3 and using the estimates for G1, G and G (all the functions k; being
non-decreasing in each variable), we can affirm that (v, ,0) € Rr as soon as

( ~ ~ ~ ~ —~ ~
ka (Huon%, TG, M2C + (VT +T)G, (VT +T)C, |Gy (0)2, MyC, TV “C) < M,

A

ks (nsooni, TG, TG, (VT +T)C, |div (Gz<0))|%) <M,

k3 (IIUollg, C (1+M3) (M1 +|IRlI3), C (1+ M3)(Mi + ||Bl3), My, VT M, [|R]3, Mz) < Ms.
\

In theses estimates, wo notations were introduced. The noted constants c depend neither on T, nor of My,
M, or M3 whereas the constants C' do not depend on time T: C = C(Q, My, Ms, Ms, ||hl|3).
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By using once again the growth of the functions k; in each variable and the fact that theses functions k;
doesn’t depend on T, it is clear that it is enough to choose three positive constants M;, M, and M3 verifying
the strict inequalities for 7' = 0:

r

kl(nuon%, 0, M2, 0, [GL (02, MaC, o) < M,

< k2(||<Po||Z, 0, 0, 0, |div Gz<0)|3) < M,

\k3<||00||§, C (14 M) (M +|Rll3), € (1+M7)(Miy + [|R]I3), My, 0, [IA]1, Mz) < M.

Thus, we choose successively My, M1 and M3 satisfying these estimates, and finally we deduce the existence
of a time T* > 0 such as O(Ry+) C Rp-.

Step (iii) Clearly Ry is convex and it is easily seen that it is closed in X7. Moreover, from Ascoli theorem
Ry is relatively compact in X, see [25].

Let us show the sequential continuity of the application © from Ry to X : assume that (U, + h, $n, 0p)
is a sequence in Ry converging to (u + h,@,0) in X7. If we note (u, + h, on,0,) and (u + h,p, o) the images
by O of (4, + h, Pn,0n) and (u + h, P, d) respectively then it is sufficient to prove that (u, + h, p,,0,) tends
to (u+ h,p,0) in Xr.

In a first step, we show that u,, tends to v in V4. The functions w,, and u being defined by

aalin — 2div ((Fn)D(un)) + Vpn = G1(iin, Pry50),  div un =0,
% —2div (9(@)D(w)) + Vp = G1 (4, $,5), divu=0.

Making the difference, posing 4 = u,, — u and multiplying the equation obtained by u, we deduce

4

w2 - L _ - .~ oy
% (152) 4 Il < 201l = T unla Ve + [ (G s 52) — G35 5)),

2
d ’U/? ’171 _ ~ . ~ ~ o~ ~ o~ o~
% (1) + 2194l < Ol — P17 + 161 ns P 5) = G 5.9

It is then enough to prove that Gi(un,Pn,0,) tends to G1(@,$,5) in H~!. For this, we recall that G is
defined in our case by

Gi(u,9,0) = —a®>ApV + div o — (u + k) - V(u + h) + 2div (n(¢)D(h)).
We know that the sequences Ag, and %cﬁn are bounded in L*>(0,7; H?) and L*>(0,T; H~2) respectively.
According to the results due to J. Simon [25], we deduce from it that AJ,, admits a limit in H2, which is equal
to A@. In the same way, @, tends to @ in @4, and thus the product V@, AP, tends to V@ A in H2. The
other terms treat same manner, by noticing in particular that @, tends to % in V5 and that div &, tends to
div & in L2.

We identically prove the convergences of ¢, to ¢ in ®, and of o, to ¢ in L2.

4 Uniqueness

In this section, we show that the solution obtained in theorem 2.1 is the only one in the class of regular
solutions. Precisely, the result reads as follow:
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Theorem 4.1
Let T > 0. Problem (1.3) admits at most one solution (u + h, @, o) in the class

0
we L*(0,T;Vi N HY) N L0, T;Vi N HY), 2 € L2(0,T; Vo) N L(0,T3 VA),

0
o € L®(0,T; @) N L*(0,T5%e), 5 € L¥(0,T;%0) N L*(0,T; Do),
o € L=(0,T; H?), %—‘Z € L>=(0,T; HY).

Proof : To prove this result, as usual we take the difference of two solutions (v1,p1,01) and (v, pa,02)
belonging to the class specified in the statement of the theorem. The scalar ¢ = 1 — 2, the vector v = v1 — v
and the tensor o = 0y — 09 satisfy the following: for any w € Vi, any ¢ € ®3 and any 7 € H?,

%.w+/(v-Vm).w+/(vg-Vv).w—/ div o.w
Q Q Q Q
+2/(n(901) = n(p2))D(v1) : D(w)+2/ n(g2)D(v) : D(w)
Q Q

- / (w- V1) Ap - a? / (w - V) Ags,
Q Q

X%
QE¢+/Q(U'V901)¢+/Q(U2'V<P)¢
—az/(B(sol) —B(902))VA901-V¢—042/ B(p2)VAp - Vi
Q Q

+ / (BF"(¢1) — BF"())Vig1 - Vip + / BF"(p2)Vep- Vi = 0,
Q Q

/Q%—(Z:T—}—/Q(U-VQ):T—I-/Q(UQ-VU):T—}—/S)l(goQ)o:T

+ / (1) — Uga))or -7+ / (9(0, Vor) + 9(02, Vo)) : 7
- / (v(@1) = (92))Dw) : 7+ / v(p2)D(v) : 7,
Q Q

Taking (w, ¥, 7) = (v, Ap, o) as function test we deduce after some computations (see [9] for similar estimates):

d a'B;
L3 +m Vol < C(ol3 + [Vl + o) + S VAL

d (o? a'B
% (F199B) + STHVAGE < (o +V6ld) + CIA% 1419

d m
2175+ hlols < O3 +[Vols +[of3) + Clof3(llovlls + llozll3 + [lolls + lleall3) + 5 Vol
Combining these three equations, we obtain the following energy inequality
g g g
d 2 2 2 2 2 2
7 (0l +1Vels +1ol3) < CBa(®) (jol +[Vel; + lof2)

with B4 = 1+ |A201 |32 + ||lo1|2 + llo2|2 + [lvills + [|lv1||2 belonging to L1(0, T). Since the initial values are

zero, we deduce from Gronwall lemma that (v, p,0) = 0. [ |

21



5 Global existence

Concerning the global existence, we cannot hope to obtain strong solutions in the three dimensional case
taking into account the fact that the problem is still open for the only Navier-Stokes problem! In the two
dimensional case, the Navier-Stokes equation is not an obstacle (see for example [26, 28]) but no result of
global existence (with unspecified data) is know for monophasic models. We thus will restrict here on the
case where the data are small. In [15], C. Guillopé and J.C. Saut prove the global existence of strong solution
with small data supposing moreover that the fluid is not very viscoelastic (what amounts for us imposing v
small). In [13], E.F. Cara, F. Guillen and R.R. Ortega free themselves from this hypothesis but prove only an
existence on [0, 7] for all T (for smaller data than 8(T'), where 8 tends to 0 when T increase...). In this part,
we will prove that this assumption of slightly viscoelastic fluid can be removed. In addition, we always take
place in the diphasic case and thus it should be supposed that the data in ¢ are “small”. Precisely, when we
speak about small data, we will suppose that ¢ is close to a constant w such that F"'(w) > 0 (this assumption
is usual, we say that w is a metastable state for potential F'). We prove then (see theorem 2.2):

Theorem 5.1
Assume ug € V4 N H?, g9 € ¥4, 09 € H%, 0, B, | and v satisfy (2.1), F satisfies (2.2), (2.3), (2.4) and h
satisfies (2.5). Let w lying in a metastable region of F'.

If h, ug, 09 and g — w are small enough in their respective space then the results of the theorem 2.1 hold
on RT. Moreover, ||ul|2, ||o||2 and ||¢ — w||3 remain small.

Proof : By definition of the metastability of w we assume that F"'(w) > 0 and B(w) > 0. The functions F
and B being regular, we know that there exists a neighborhood V of w in R on which F" > 0 and B > 0. We
can so consider two functions F,,, B, verifying

F!=F" and B,=B onV,

F eC*(RRY), BeC*RR"),

F,(w) =0, F(w) =0, F, is convex and all its derivatives are bounded on R.

It is clear that B, verifies (2.1) and that F,, verifies the hypotheses (2.2), (2.3) and (2.4). Moreover, the
convexity of F,, implies that we can choose (in the assumption (2.4))

VzeR, Fi(z)=1 and Fy(z)=0.

In the sequel of the proof, we work with the modified problem, obtained by remplacing B and F' by B, and
F,. Since we will show that ¢ remains close to w (and precisely in the neighborhood V), the solution obtained
for the modified problem will be also solution of the initial problem (see [4]).

We know that to show an estimate with small data, the quadratic terms are easily controled. For this
reason we write the system (1.3) in the following form

ou . T

5 ~ 24iv (n(p)D(w) + Vp = div o + Hy, (5.1)
divu =0,

99 L y.v +1U(p)o = v(p)D(u) + H,

5 o+l(p)o=v(p 3> (5.2)
v=u+h,

9% _ div (B(o)Vp) = div (Ha)

5 ©)Vu) = 2), (5.3)

p=—a’Ap+ F'(p),
with the conditions

o}
u(0) =uo, ¢(0) =g, 0(0) =00, ulr=0, °e
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and we define
Hy = —a?ApVy +v - Vo + 2div (5(¢)D(h)),

H, = —(U + h)g@,
Hs = g(0,Vv) + v(p)D(h).
Let us prove energy estimates on the solutions of (5.1), (5.2) and (5.3):
Step 1: Estimate on the velocity. Let us take again the estimate of u in L (0, T; V;)NL2?(0,T; VN H?)

(section 3.1.1) obtained by carrying out the scalar product of (5.1) by Au. It is written in our case

d (|Vul? .
(T2 ) + BB < COH + Vol V) + v o, (5.4

Step 2: On the monophasic model. In fact we can see that using the coupling terms div o and
v(p)D(u), we can obtain more interesting estimate if we add (v(w) x (5.1),u) and ((5.2), 0):

& (vl +108) + (vomIVu + ulok ) < [ v+ [ Heo
+ /Q V(W) div (o). + /Q () D(u).o

With an integration by parts, the coupling terms write

/Qlj(w) div (o).u + /Q v(p)D(u).c = / (v(¢) — v(w))D(u).o.

Q

Using the fact that (see [12, 27] for the laplacian regularity)

lp — wloo < o —m(p)]oo + [Mm(po) — vl
< Cllpe = m(p)ll2 + [m(po) — wl
< C(|Aplz + [po — W),

we obtain

d
& (v +1012) + o (198 + 1012 ) < CUUELIZ, + 1) + ClAGE + o —w)loe (53)

By taking the derivative in time of (5.1) and (5.2), we get the same estimates for d;u and §;o, the only
difference being principaly in the behavior of the terms

2div (n'(go)aa—fD(u)) and V'(@)ED(u)

respectively appearing when we derive the Stokes equation and the Oldroyd law. Multiplying the first term
by dyu and integrating on 2, we get

[aiv (52 0w) 52| < | [ 058 (Vo000 5
| [ (T0) G + 5| [ %z
<o(| %), |D(“)|2§ H%‘f <>||2§ +\@*0 %)
<5, e R 4 iy
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Concerning the second term, we multiply by 0,0 and integrate on Q:

Dy do dpl*|oo ,|00
[vo5En0: 57 <o/ 5| k| 57| <o(|52] |57 + g% ).
We deduce:
d dul® |80 dul’ OH.|*> |0H;|> |0¢|*|00 ,|00
ol L) (5], +[571) (e L, + el 52+ v
oo
H ' ol + e loo =) 37
1 2
dyp
|22 2 g 22

Step 3.1: Estimate for Pdiv o. We recall that P is the orthogonal projection from L? on the subspace
of divergence-free vector fields with vanishing normal component on the boundary. Our next task is to get an
estimate for Pdiv o. For this purpose, we start out by applying the divergence operator to (5.2). We next
apply the Leray projection and we deduce

%]P’ divo + P(v-Vdiv o) + l(w)Pdiv o =P(({(w) —
—P('(
P((v

I(p))div o) —P(Vu: Vo)

Q)Vp.0) + Pdiv Hs + P(v' (9)Ve.D(w))
(p) —v(w))Au) + v(w)P(Au).

Using (5.1), we obtain an estimate of P(Au) = —Au:

V@) P(Au) = X (T~ P((1(e) — nw))a) — Pliv o = P + 2801/ (¢) V. D(w) )

The equation for Pdiv o becomes

%Pdiva+P(v-Vdiv o)+ ( )]P’dlva— (w) = l(p)) divo) + P(Vu: Vo)
—P(I'(p)Vp.o) + Pdiv H3 + PV (¢)Vp.D(u)) + P((v(p) — v(w))Au) (5.7
+ LS8~ B((n(e) ~ () Au) — PH, + 2P0/ (9)Vp.Dlw) ).

Lemma 5.1
We have P(v -V divo) = (v-V)Pdivo + R with (see [24]):

|[RJ5 < Clloll} Vvl

Proof of the lemma: We split div o = T + Vg where T is a divergence-free vector field with vanishing
normal component on the boundary (Pdiv o = T'). Hence

P((v - V)div o) = P((v- V)T) + P((v - V)Vq) = (v- V)T — (Id — P)((v - V)T) + P((v - V)Vq)
with the relations
(v-V)Vq=V((v-V)q) —Vv-Vq so P(v-V)Vq)=—P(Vu-Vq),
(v- V)T — (T-V)weVy so (Id—P)((v-V)T) = (Id—P)(T - V)w).
We deduce:

P((v-V)divo) = (v-V)T — (Id-P)((T - V)v) — P(Vuv - Vq)
= (v-V)T — (Id — P)((Pdiv o - V)v) — P(Vv.(div o — Pdiv o))
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The bound on the rest R is now obvious. [ |

We multipy (5.7) by Pdiv ¢ and we integrate. We find, using the lemma 5.1:

d . > 1
2 (1paiv o) + Ciiv ofg < {1Vl + Ioo — )l + ul)

Sl (5.8)
+ DI + v Half + | 52|+ )
2
Step 3.2: Control of Au. Since
1 3}
Au = o) ( - 8_:: + P((n(¢) — n(w))Au) + Pdiv o + PH; — 2H”(n'(g0)Vg0.D(u))) , (5.9)

an estimate on |Pdiv o] allows us to deduce a bound on |Au|2 and by Stokes regularity, a bound on ||ul|z :

@2

Il < ¢ (|5

Step 3.3: Estimate on o. Taking the inner product (V(5.2), Vo) we find

+ (18013 + lvo — w2 llullz + [Pdiv of3 + |Hi3 + ||V<p||§IIUI|f)- (5.10)
2

d (|Vol|2
% (T2B) + 1908 < CVOI Vo + Vplelold + Vi IVl + (V) + Clul

Using the estimate (5.10), we obtain
d
4 (I908) #2010 < CAVOLIVoB + [Vollo + Vel IVl + [V

+C( ou (5.11)

2
51|+ (AL + e —wlS)ulls + | Hil3 + IIlelgllull%’) +C|Pdiv of5.
2

We can combine estimates to cancel the term C|Pdiv o|2 in the right-hand side : the sum 2C(5.8) + C'(5.11)
gives

d . .
G (1o + 1pav o)+ 0(1Vo + [Paiv ol ) < (IolBllol? + Il + 17

guz (12

+ (I + o = )l + ) ) + |5

2
Step 4: More estimates... Using arguments similar to those presented in the previous step, we first
apply VPdiv to (5.2), using VP(5.1) we deduce

d (|VPdiv o3 v(w) . 2 2 2 2
E(f + l(w)+m [VPdiv of; < C{ (IVellz + o = wlS)lollz + llull3)

. oVu
+IVellz(ols + llull}) + [lvl3lloll3 + |V div Hsl3 + ‘

ot

2
+ |VH1|§).
2

Remark 5.1
During this estimate, we only know that o € L>°(H?). It is thus not allowe a priori to make the computation
VP div (u- Vo). We can justify this by regularisation just like we do it during the proof of the Oldroyd lemma,
section 3.3.1.

Next, by the Stokes operator regularity properties we obtain a bound for ||ul|s (using (5.9)):

2

ou . .
+ |VPdiv UI%) + C((IIVell3 + o — w2 )lull3 + IVH[3 + IVell3llullf). (5.13)
1

lull2 < co(
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Computing (VV(5.2),VVo), we have

d
7 (IVVUI§> +2U|VVal3 <C(IVul% Vol + Vel Va3 + [Velslols + Vel llulld + [ VHs[3)

oul? ‘
+ C(' S| FIVellzliulls + V3 + |w|:§o||u||§) + C|PV div o2,
1

that is combined with the estimate for |[VPdiv o, gives

d . .
G (19903 + (vpdiv o) + € (1990l + VP div o1 ) < € (Il + 1 + Il o1

(5.14)
dul®
+ (I + bow =)ol + ) + IVl + D) + €| G
Adding (5.12) and (5.14) we find
d . .
& (150l + 1Pdiv o1} ) + 4 (190 + [P aiv ol ) < 0 (1l + 1l + ol
gz (19)
u
+ (1718 + o = w2 )0l + ) + IVl + Il ) + G| 5

Step 5: Estimates on the Cahn-Hilliard equation. The equation (5.3) was already studied in
the lemma 3.2. In the present case, we can use the fact that the potential we consider is convex (that is
Fy(m(po)) = 0). Moreover, the potential and all its derivate being bounded, the estimate (3.16) write

d , 2
(194 5 [ o) +o(19el+ 2 [ ro+ |52

Step 6: Estimates on source terms. Now it is sufficient to estimate the norm of Hy, Hy and H3. We
have easily

) < CIVells +IVolls + [ div Ha13). (5.16)

IHLE < Clullllellz + [IVellz + [lull2lIRlE + 1Al12 + 1+ IVelDIIRE),
[[div Hal3 < C(lull3IVel3 + 18131V el13),
1H5]5 < C(llol3llull3 + o l311A115 + Q1 + [IVellDIR]Z),

and for the time derivatives

dH, | 1037 2 N Ou
<
H ot ||, S (‘ H |v90”2 ‘at 1|h||2+ ||h||1
O Hs|? dol’ 30 u 5 el 0
< .
‘ ot 2—0( ot |, ”h”3 ' ot +H ot

Step 7: Conclusion. From the computation

Cy Cy+Cs Cy
E X (5.4) + (5.5) + Cs (5 6) 200

x (5.13) + (5.15) + (5.16)

and from the bounds on the terms H;, we can write
Y +Cz2< 2 fly)+Ci1 2+ Ci2, 2>y>0
with
y = [lulli + lloll3 + [0eul3 + 0o 3 + [P div ollf + [ Veoll3 +/QF(<p)
z = ||ull3 +[loll3 + 10l + 0o 3 + [P div ollf + [V ll5 + [|0epll3 +/QF(90)

Cui = [[hll3 + lpo — w3, and  Ciz = [|R]I3 + [|Al3-

26



The function f is continuous and vanishes in 0 (in fact the product zf(y) contains all the nonlinear terms).

The following lemma prove that if y(0), C1; and C}» are small enough then y remains small on the interval
[0,T*]. Consequently y(T*) is small and we can apply again the existence theorem 2.1: we find a solution in
[T*,2T*]. We can repeat this argument in each interval [0,nT*], n € N. We proved that

u € L™¥(R"; Vi) N LY (RT; VA N H?), 86—? € L=(R"; Vo) N L}, (RT; VA),
P € LR NI, (R 80), 0F € 17, (R 8a),
o € L®(Rt; H?), %—(tf € L®°(R*; L?).
It remains to be shown that
u € L®(RY; Vi N H?), aa—f € L(R";®;), and %—‘t’ € L=(R"; HY).
To prove that u € L= (R*; Vi N H?), we proceed like in the proof of the lemma 3.1: We first write
Vp = —a®APVE + dive — v - VU + 2div (7D (v)) — %—?

which implies p € L>®(Rt; L?/R). Next, we rewrite the same equation to make appear the Stokes operator
Au, and we obtain the desired result (see the last part of 3.1).

Using the estimate (3.17) with div G2 = v - Vy it’s easy to conclude for the quantity d;p. In the same
way, the estimate (3.20) with G5 = v(p)D(v) allows to obtain the result for d;o. [ |

Lemma 5.2
Let y and z be two C! functions defined on [0, T] and satisfying

Y+az< 2z fy)+B, 0<y<z

Assume that f is continuous and f(0) = 0, « and 3 being positive constants. Let M be a positive real such
that 2f(M) < a.. If 3 < Ma/2 then

y0)<M = y<Mon|0,T] (5.17)

Proof : Suppose that (5.17) is not true, and set T = inf{t € [0,T], y(t) > M}. Clearly we have y(T) = M

and y'(T') > 0. Moreover, using the differential inequation evaluated in T':

y'(T) < 2(D)(F(M) - a) + 5.

From 2(T) > y(T) = M and from the choice for M we have y'(T') < 0. This gives a contradiction. [
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