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ABSTRACT. We consider a model of mixture of non-newtonian fluids described
with an order parameter defined by the volume fraction of one fluid in the mix-
ture, a mean-velocity field and an extra-stress tensor field. The evolution of
the order parameter is given by a Cahn-Hilliard equation, while the velocity
satisfies the classical Navier-Stokes equation with non constant viscosity. The
non-newtonian extra-stress tensor, which is symmetric, evolves through a con-
stitutive law with time relaxation of Oldroyd type. We derive at first a physical
model for incompressible flows (with free-divergence property for the velocity).
In fact, the model we consider contains an additional stress diffusion, which
derives from a microscopic dumbbell model analysis. The main result of this
paper concerns the existence and uniqueness of a local regular solution for this
model.

Introduction. To study the behavior of a binary mixture polymer/solvent, we are
interested in the specific case of an heterogeneous mixture. We propose a model
which determines the evolution of the interface by diffusion and by movement. This
approach was used in the 50’s by J.W. Cahn and J.E. Hilliard [4]. Its main advan-
tage is that it automatically yields to a continuous description of the surface tension,
which plays an important role in topological transition [17]. Furthermore, to model
the hydrodynamic properties of a mixture an equation for a mean velocity field
is needed. The resulting equation is essentially a non-homogeneous Navier-Stokes
equation. The Cahn-Hilliard and Navier-Stokes equations are coupled because of
the surface tension source term (in Navier-Stokes) and the convective transport
of the interface parameter in the Cahn-Hilliard equation. Moreover, we study the
case where at least one of the two liquids in the mixture is a non-newtonian fluid
(a viscoelastic fluid). This characteristic is given by a non-zero extra-stress tensor
o which is symmetric [10] and obeys the constitutive law of Jeffreys type [19].

In this paper, we first present a theoretical model to study the incompressible
mixture of viscoelastic flows. For the mathematical study, we assume that the two
phases have the same densities. In the second section, having introduced some sup-
plementary hypotheses (non-degenerate mobility, “almost polynomial” potential...)
and having defined the mathematical context, we state the main result: the local
existence and the uniqueness of a strong solution for our problem. Two rather
different cases appear depending on the covariant derivative chosen in the Jeffreys
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model. The main part of the paper is devoted to the proof of these results. In the
third part, we recall some preliminary results on the order parameter (whose aver-
age is conserved), on the tensorial algebra, on the classical term of the transport
in the Navier-Stokes equation and on various results of compactness. The fourth
part is devoted to the proof of the existence in the general case, based on Galerkin
approximations and energy estimates. The last two parts are devoted respectively
to the proof of the uniqueness and the proof of the particular case where we have
chosen the corotational invariant derivative in the constitutive law.

1. Governing equations.

1.1. Derivation of the governing equations. In this section, we develop a
model for a binary fluid in which both constituents are incompressible (such a
binary fluid is called quasi-incompressible, see [17]). In this way, we consider a
mixture composed of two incompressible phases of mass densities p? and p3. The
temperature is supposed to be constant. To describe a continuous time-dependent
concentration profile, we need a dynamical equation for a parameter describing the
ratio between the phase 1 and the phase 2 at each point of the mixture. To derive
such an equation, we define the volumic fraction of the first fluid in the mixture (or
equivalently, its mass concentration) by

® = (t,x) = dV; /dV,

where dV; is the volume filled by the fluid 1.
Let us introduce the density and velocity of the mixture as follows: the apparent
densities of each fluid in the mixture, denoted by p1 and pa2, are defined by

pr=2p),  pa=(1-9)p,

and the total density is equal to the sum p = p; + p». Each fluid possesses its own
velocity field v;. In this paper, we define the mean velocity v by v = ®v + (1 —®)v,.
Note also that some authors (see for instance [17]) consider a mean velocity defined
by pv* = pyv; + pavy. The advantage of this first definition of the velocity is to
preserve the divergence-free property.

In order to obtain the equations describing the mixture, we apply the usual mass
and momentum conservation laws for the two fluids. The mass conservations read:

6tp,- + div (pz’l},) = 0, 1= 1,2.

Dividing each of the equations by p?, adding the equations and using the definitions
of p1 and ps, the mean velocity field satisfies the “incompressibility” property:

div (v) = 0.

Following A. Onuki [21] who introduces the relative velocity of the polymer and the
solvent, we set w = v; — v2. Moreover, to keep all the symmetry in the problem,
we prefer to introduce the renormalized order parameter defined by

©=2%—1.

We have —1 < ¢ < 1 and ¢(x) = 1 (resp. ¢(z) = —1) if and only if the fluid 1
(resp. the fluid 2) is present at the point x.

Using the “incompressibility” property (1.1) and the fact that v; = v + I_T“’w,
the equation of mass conservation for the first fluid reads

. (1=¢?
Orp +v.Vop + div 5 W)= 0. (1)
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The momentum conservation gives two additional equations: the equations of mo-
tion for the two components are

O(pivi) — div (E;) + div (pjv; @ vi) = F;, i=1,2 (2)

where ¥; and F; respectively correspond to the stress tensors and the exterior
forces. The stress tensors are split into two main parts, first the hydrodynamic
partial pressures denoted by p;, second the extra-stress tensors 7; (which obeys a
constitutive law that we will study further):

Ei = —piId+ Ti-

Moreover, we assume that the partial pressures are given from a total pressure p
and that the extra-stress tensors are given from a global extra-stress tensor 7 by
the following relations

1+ 1-—
b1 = —(pp7 b2 = —(ppa 1

_1+cpT 1—¢
2 2 -

B 5 T = T.

2

Finally, the forces are assumed to be of the following form:

Fi=-pVin+prg=&p)w . Fo=—p2Vus + pag + E(p)w,

where the first terms correspond to the chemical potentials, the second terms to the
gravity force and the last to the friction between the two components (£ is called
the coefficient of friction, see A. Onuki [21]). A thermodynamic description allows
us to write the chemical potentials using the specific free energy F [20] as follows:

1-p0F
2p(p) Op

1+p0F

p2 = po(p) — 5~ 5

Here po(yp) is the chemical potential of a theoretical uniform alloy of composition
¢ and the other terms are exchange terms due to the non-uniformity of the alloy.
Afterwards, we suppose that the temperature is constant and the specific free energy
depends only on both the concentration (or equivalently the order parameter @)
and its spatial gradient (see for instance [5], [21]):

F() = [ 5196 + EFp), )

A and F being two physical parameters describing the interaction between the
two phases, and F' being the Cahn-Hilliard potential. For example, the Ginzburg-
Landau-Wilson free energy functional for ¢ is given in the usual form (see [21]) by
a polynomial expression of the following type

F(p) = Crp* — Cap?. (4)

This polynomial form of the chemical potential is classically used in the literature
but it is an approximation of a logarithmic expression given by M. Doi in [7]:

Fp) =Te(1 - ¢*) + T((1 + ¢) log(1 + ) + (1 — p) log(1 — ¢)). (%)
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Adding equations (2) describing the motion and using the definitions of the mean
velocity, the total density, the global stress tensor and the total pressure, we deduce:

1_ 2
o (pv+<p‘f—pg) ¢ w) _ div (—pld+ 1)

: 0 0 1—¢? 0 01_‘P2
+div [ pv@v+ (p] +p3—p) 1 wRw+ (pi — p3) 1 (vew+wew)
1—¢? 10F 10F
_ _ 0o_ 0 -z I
= =PV +pg = (p1 = p2)— V(p&o) 33, V¢

(6)

To obtain a second equation coupling the two velocities v and w, we replace the
equations of motion (2) by their non-conservative forms:

p,-@tvi + pivi.Vv,- — div (ZZ) = F; 1=1,2, (7)

and from p2(7)1 — p1(7)2, the relative velocity w is governed by

1
P1Pp20sw+p1po (U.Vw +w.Vv — p(w.Vw) (w.Vgo)w) — g(r —pld).Vo

2
1 —¢? 10F

(8)
+ (09 - pY) T div (r —pld) = —p1p2V (;%> = pé(p)w.

A characteristic of the mixture is the fact that the two phases are non-Newtonian.
More precisely, we assume that the extra-stress tensor is given by a differential
constitutive equation of Jeffreys-type (see [12]):

DTz' + Ti Zm
Dt My Ay

)\2 i D
D(w;) + 20222 Z_D(v;), i=1,2. 9
(vi) + 771)\“ Di (vi), i 9)
In this model, the deformation tensor D(v), is defined as the symmetric part of the
velocity gradient: D(v) = (Vv+ V'v)/2 and the parameters 7;, A1,; and )2,; denote
respectively the elastic viscosity, the relaxation time and the retardation time of

the fluid 4. The notation % represents an invariant time derivative which can be
defined by (see [12]):

DM
i = M +v.VM —W(w).M + MW (v) —a(D(v).M + M.D(v)),
where a € [—1;1] is a rheologic parameter and W (v) is the skew-symmetric part of
the velocity gradient: W (v) = (Vv — Viv)/2 (called the vorticity tensor).
To obtain a constitutive equation for the total extra-stress tensor 7 in the mix-
ture, we assume that there exists a mean viscosity 7 such that

1+
- 2 77 ’

and we define A1 = A\ (¢) and Ay = Aa(p) by:

1_l+pl l-p 1 X _lrpla lopls
A2 Mg 2 A2 A 2 A 2 A2

l-¢p
N2 = —4—,

yit D)

We can remark that the rate Ay /A; measures the Newtonian default of the mixture
(in a Newtonian fluid, the retardation time and the relaxation time are equal and
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close to zero, see [12]). With these definitions, adding equations (9) we obtain:

Dr 1 2 A D A2
T T D)+ 22 2 D) - 28,00
Dt oy~ W) I ppP0) — e D(w)
+2 1-¢* (L—L)D(w)—l(v Quw+w V) 10
7 4 A A A1 ¥ ¥ (10)
1—¢? (A1 A2\ D nA2 D
2 221 222 ) 2 py) - 122 .
+ 2n 1 <A1,1 )\1’2) D1 (w) N Dt(Vgo@w-I—w@ch)

Following A. Onuki [21], we assume that the relative velocity of the fluid 1
and the fluid 2 is lower than the mean velocity of the mixture (w < v). Under

the previous approximations, the equation describing the evolution of the relative

10F

velocity (8) can be written as 0 = —pyp2V (p %) — p&(p)w, and allows to deduce

a convection-diffusion law for ¢ using (1):

(=22 1 18F
B + 0.V — p2pd div ((7—v “27) Y=o
w v 8 pllp) \p oy

With these approximations, the equations (6) and (10) become (the terms —pV g
and pg are considered as pressure terms)

O (pv) — div (—pId+ 1) + div (pv @ v)

1—*_(10F\ 10F
—_ _(,0_ 0 — -Zv
DT T 2n Ao D

2T T 21D+ 2022 2 D).

D Ty = n LW 2y 5 P)

Some authors [10], [11] decompose the stress tensor into a viscous stress plus
an elastic stress 7 = 2nAa /A1 D(v) + o and introduce the retardation parameter
r =1— Xy/A. Moreover, A. W. El-Kareh and L. G. Leal [8] have analyzed the
microscopic dumbbell model and derive an additional stress diffusion term. In this
way, we can add a term like £Ao to obtain the equations describing the mixture:

( . (B(p)_ (10F
Opp +v.Vp — p?pY div (—v (——)) =0,
(34 P = P1P2 P » dp

p(Ov +v.Vv) — div (2n(p)(1 — r(p))D(v)) + Vp — div o

(0l (LOFN 10F
o = —(p1 — p2) 1 v 2 9o 26(,0V(’0’
Do o n(e)r(e
- =92 D A
[ Dt PN T M) W TEA

where B(p) = (1 — ¢?)?/8&(p) (mobility coefficient).



50 L. CHUPIN

1.2. Dimensionless equations and final model.

([ p=1+2(p—-1), divv =0,
8t<P+v.ch—%div (@V (%)) =0, p=—a’Ap+ F'(p),

p(Opv + v.Vv) — % div <2n(cp)(1 —r(p ) +Vp— — d1v o

N 7 K
=-1— )CV(p)+2qu0,

= 20(¢) 5tk D(v) + Ao,

D
D<t7 + We(cp)

In this system we have introduced eight independent dimensionless parameters
for the model. The generalized chemical potential p is defined with the Gibbs
free energy F (see (3)) by u = 5= = —AAyp + EF'(p). The characteristic size

of the interface is given by I = \/A/E. If we choose L as reference length, a
first dimensionless parameter is introduced: a = l/L. The reference density is
p =maz{p}, pd} (p = p for example) and the contrast between the two densities
is described by another dimensionless parameter v = Pi=65  Another reductions are
obtained by using classical dimensionless variables, and introducing the Reynolds
number Re = pV L/}, the capillary coefficient K = ET/LpV, the Peclet number
Pe = LV/E(1—4v), the Weissenberg number We = We(p) = A /T, the retardation
parameter 7(p) =1 — 52 and ¢ =T/ L.

To obtain a well- posed problem, we define the initial conditions and the boundary
conditions. We assume that the initial conditions ¢g (), vo(z) and oq¢(x) are given
on a bounded domain 2. For the order parameter, we assume

Z—: =0 and ?9_n =0,
where n is the outward normal on the boundary of the domain I". The first condition
imposes locally the interface to be orthogonal to the boundary. The second imposes
no-diffusion through this boundary. For the velocity, we assume that

v[p=h with hn=0.

As we have an diffusion term €Ac in the constitutive equation for o, we have give
a boundary condition for the stress tensor:

gg—o onT.

In the following, we restrict the study to the incompressible model: we suppose
that the density are perfectly matched (p; = p2 or simply v = 0). For the mathe-
matical study, all the physical constants (Reynolds number, Peclet number...) are
equal to 1 and our model reduces to the following:

([ Op +v.Vp — div (B(p)Vpu)) =0, with u=—a?A¢ + F'(p),

O 4+ v.Vv — 2div (n(p)D(v)) + Vp — div o = uVp, with dive =0,
g (11)
90 +0v.Vo + ga(0,v) + l(p)o — Ao = f(p)n(p)D(v),

with boundary conditions and initial values,
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where we define g,, [, f and h as follows: the application g, is bilinear with values
in the set of 2-tensors :

9o: (0o, v)r— —W(W).oc+ o W()+ a(D(w).c +0.Dv)),

the functions f,l: R — R, of C'*° class with all derivatives bounded and in partic-
ular with 0< fi < f < fo,0< 1y <1< 5.

The first two equations are known as Cahn-Hilliard equation (see [4], [17]) with
variable mobility. The parameter a measures the thickness of the interface be-
tween the two phases (a narrow transition layer across which the fluids may mix).
Although the Cahn-Hilliard equation has been intensively studied, little mathemat-
ical analysis has been done for a diffusional mobility B which depends on . This
concentration-dependent mobility appeared in the original derivation of the Cahn-
Hilliard equation (see [4]). The mathematical study of the degenerate case of the
Cahn-Hilliard equation is performed in [9]. Moreover, we can easily see that the
convexity of the Cahn-Hilliard potential has an important effect on the comport-
ment of the interface: if F' is non-convex, the mixture is unstable (the diffusivity is
negative in the Cahn-Hilliard equation) and the fluids are only partially miscible.

The next two are the classical Navier-Stokes equation for an incompressible fluid.
Following [3], the viscosity n is generally non constant and depends on the local
composition of the mixture. The chemical interaction V¢ and the extra-stress
tensor ¢ are the two force terms which naturally appear.

The fifth equation represents the constitutive law of the extra-stress tensor. Con-
trary to Newtonian fluids, there is no universal equation for viscoelastic fluids (the
various models are given for different values of the rheological coefficient a).

In the literature, various articles are devoted to these problems. Both uncoupled
equations: Cahn-Hilliard [9], Navier-Stokes [6], [13] or transport equation, and
coupled equations like Cahn-Hilliard /Navier-Stokes [2] or Navier-Stokes/transport
[11] and [16].

2. Assumptions and main results.

2.1. Assumptions. The functions B, n and F' are supposed to be regular enough
(C? class with bounded derivatives for instance). We suppose here that the mobility
is non-degenerate and that the viscosity is bounded:

EIBIJBQ>OJ Bl SBSBQJ (12)

In,m2 >0, m <5 <. (13)

It remains to make assumptions on the Cahn-Hilliard potential F'. A physical-
meaningful potential is always bounded from below and adding a constant to the
potential does not change the equations. Then we can assume that

F>o. (14)

Usual potentials, as the potentials described before (see equations (4) and (5))
contain at the same moment stable and unstable regions. From the perspective to
handle such cases, we shall suppose that

3F5 Z 0 / Vz € R F”(w) Z —F5. (15)

To obtain the existence of solutions, we shall add more general hypotheses on the
growth of the potential in the neighborhood of the points ¢ =1 and ¢ = —1.

3 F]_,F2 > 0 such that |F”I(.'E)| S F]_l.fL’lq + Fz, (16)
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where 1 < ¢ < +00. To obtain a global solution (theorem 2.2) we must suppose
1<¢<3ifd=3and1<q¢g<+xifd=2. (17)

It is clear that polynomial functions of even order for d = 2, or of order 4 for d = 3
(see for instance (4)) with a positive dominant coefficient can be used as a function
F. The Cahn-Hilliard equation is usually studied with such non-linearities in the
literature. Finally, the last assumption is a generalization of the convexity:

VyeR 3F3(y),Fi(7) >0 / VzeR (z—7)F'(z) 2 F3(v)F(2)-Fi(v)- (18)

This hypothesis is satisfied for example by any convex function by using F3(y) =1
and Fy(y) = F(v). However, under the critical point the Cahn-Hilliard potential
considered have typically a double-well structure and are obviously not convex.
They verify nevertheless this property.

Finally, we need of one hypothesis on the velocity boundary condition h. It’s
defined only on the boundary and is rather regular:

h € H*(T') where s = (d+1)/2, h.n=0. (19)

In the three dimensional case we add an assumption on A which correspond, for
instance, to the physical case of a channel where the velocity is constant on each
plane (see section 4.1 and remark 4).

2.2. Function spaces. Throughout this paper, the same letter C' stands for a
constant which may be different each time it appears. Let Q be a smooth bounded
domain in R?, d = 2 or 3. We denote by I its boundary and n the outward unit
normal vector. We will use the following spaces: the Lebesgue space LP() (or
simply LP), 1 < p < oo, with norms |.|, (for p = 2 its inner product is (.,.)); the
Sobolev spaces H*(Q), (or simply H®), s € R, with norms ||.||s and inner products
((-,.))s. To simplify the notations we will also denote the vector spaces (LP)¢,
(H#)?, (LP)4*d (H#)4xd | by IP and H® respectively , their norms being denoted
in the same way as above. If I is an interval of Rt and X a Banach space, we will
also use the function space LP(I;X), 1 < p < oo, which consists of p-integrable
functions with values in X. We now introduce the natural spaces linked to the
problem (for s > 0):

29, _ 089
on't T on
V={weD®)? / divw=0} and V,=V" with the norm ||.||; (s < 3/2),

d={peDQ) / [r =0} and &, = 3" with the norm [l

L ={rep@** / %'F =0} and X,= T with the norm [I-]]s-

For s' < 0, we also use the notation ®,, V» and X4 for the dual spaces of ®_,
V_g and X_ respectively. Finally, we denote by A the classical Stokes operator:
Au = —Au+ Vr (7 € L), with domain V; N H2.

2.3. Main results. Since h verifies the assumption (19), we know that there exists
a vector field, being still noted h, which extend h on Q and such that h € H?(Q)
and div h = 0 on Q. With this result, we can express the following theorems

THEOREM 2.1 (The general case). Assume that (12), (13), (14), (15), (16) and
(18) hold, and let po € P35, vg € h+ V1 and o9 € X1. Then there exists T* > 0 and
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an unique solution (p,v,0) of (11) on [0,T*[ such that
@ € L*(0,T%;@4) N L™(0,T*; ®5),
v—he L*0,T*;VinH>) N L®(0,T*; V1),
o € L2(0,T*; %) N L™®(0,T*; %y).
THEOREM 2.2 ( The case a = 0 ). Assume that (12), (13), (14), (15), (16) with
(17) and (18) hold, and let a = 0 in (11), pg € @1, vog € h+ Vo and o9 € 9. Then
there exists a global solution (p,v,a) of (11) such that
¢ € L7,.(0,+00; ®3) N L>(0, +00; ®1),
v —h € Li,e(0, +00; V1) N L*(0, +00; Vo),
o€ L2 (0,+00; %1) N L>®(0, 4+00; Tg).
COROLLARY 2.1 ( The case @ = 0 in dimension 2 ). Assume that d = 2 and that
(12), (13), (14), (15), (16) and (18) hold. Let a =0 in (11), pg € ®3, vo € h+ W,
and o9 € X1. Then there exists an unique global solution (p,v,0) of (11) such that
€ Lio (0, +00; 4) N L>(0, +00; B3),
v—nhe L, (0,4+00; Vi N H?) N L®(0,400; V1),
o € L}, (0,+00; £2) N L*(0, +00; X1).
REMARK 1. - In the second theorem, we can suppose that F is of C?-class only.
- The value a = 0 corresponds to the corotational convected derivative (the values
a =1 and a = —1 correspond respectively to the upper convected and lower convected
derivative).
- In the general case, we show the existence and the uniqueness result for a local
solution. In the case a = 0, we obtain a global weak (strong in dimension 2) solution

for a general initial condition, but we do not have the uniqueness of such solutions
in the three dimensional case.

3. Preliminary results. First of all, for any f € L!(2), we define the average of f
by m(f) = ﬁ Jo, f- In particular when ¢ verifies the Cahn-Hilliard equation (with
a regular velocity field for the transport) and the boundary conditions: ¢ € ®; ,
its average is preserved along the time. Moreover, we have the following lemma,
proved in [24]:

LEMMA 3.1. If ¢ € O, then ||p—m(@)|l1 < C|Vd|2, and more generally if p € Pyyo
then [|¢ — m(¢)[|s+2 < Cl|A¢]ls.

From this lemma, if we use the embedding H3/2 ¢ L™ for d = 2, or Agmon’s
inequality if d = 3, and the interpolation between L? and H®, we have in both cases

LEMMA 3.2. If ¢ € B4 then |Vo|o < C|Vo|L/*|A28]3/%.

3.1. Elementary tensorial analysis. To obtain energy bounds, we recall some
tensorial results. At the end of this part, we prove two equalities on the application
go which will be usefull in the sequel.

DEFINITION 3.1. The s-contracted product of a p-tensor A and a q-tensor B (for
s <min{p,q}) is a (p + g — 2s)-tensor defined by:

Ap : Bq: 2 ail,...,ip_s,k1,...,ksbkl,---,ksajs+la“'ajq

ki,...,ks . . . .
v Useeslp—ss)s+1s::3dq
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REMARK 2. For more simplifications, we shall note A ((:)) B=AB, A (%) B=AB

and A (?) B = A: B. Moreover the operator ¥V represents the 1-tensor (Oy)r and

we have A = V.V, div M = V.M. With these notations, when A and B are two
p-tensors, we define directly: (A,B) = [, A (I:)) B.

PROPOSITION 3.1. For 1 < s < min{p,q+ 1}, let A, be a C* p-tensor and B, a
C® g-tensor. If A, is symmetric (or if p = s) then:

(s) (s—1) (s—1)
/ 4,9 (vB,) = - / v.4,) "7V B, + / (n.4,) "7V B,.
Q Q r
REMARK 3. Remember that, for two p-tensors A and B, we have by definition

(A,B) = [,A (1:)) B, and in the case p = 2 (matricial case), since A : B =
Tr(A!'B), we obtain: (A,B) = [, Tr(A'B). This remark allows us to obtain two
interesting equalities in which we can see the particularity of the case a = 0.

LEMMA 3.3. If g, is defined as in (11) with v and o regular, then we have:
(9a,0) =2a(o.0,Vv) and (gq,Ac) = (a+1)(Vv.o,Ac) + (a — 1)(0.Vv, Aog).

Proor: By writing the definition of g,, a direct computation gives us the result
(the hypothesis of symmetry on o is very important here)

Go:0 = Tr( - W).olo+ U.W(v).ta) +aTr (D(v).a.ta + U.D(v).ta) ,

=2aTr(D(v).0.0) = aTr(Vv.o.0 + Viv.0.0) = 2aTr(0.0.V'v).

The proof of the second statement is very similar: we use the fact that Ao is
symmetric too. O

3.2. Result for the inertial term in the Navier-Stokes equation.

DEFINITION 3.2. Let u be a divergence-free vector field of R*. We define, for o and

T two p-tensors: b(u,0,7) = [(u.Vo) (;?) 7. For two vectors v and w, we find the
classical definition (see [6]): b(u,v,w) =37, ; Jo ui(Biv;)w;.

The trilinear form b, as well as b, has many continuity properties (see [6], [23]).
Among these, we will mainly use the ones given below:

LEMMA 3.4. If u € Vi, 0 € H! and 7 € H' then b(u,0,7) = —b(u,7,0), in
particular
b(u,7,7) =0. (20)

IfueH',veH andw € Vyyy then |b(u,v,w)| < Cluly’|lulli/*[ols"* [ ]l lwlla2-

4. Proofs of the existence results. All these proofs are based on a Galerkin
approximations associated to energy estimates [15], [23]. In section 4.1, we reduce
the non-homogeneous Navier-Stokes problem for the velocity v to a homogeneous
problem for a new velocity u = v — hs. In a second step, we construct approximate
solutions of the problem (11) by the Galerkin method. In section 4.3 and 4.4, we
give some estimates for (p,u, o) and their derivatives. These estimates allow us to
perform the limit in the non-linear terms (using compactness methods, and some
strong convergence properties).
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4.1. The non-homogeneous boundary conditions. First, we recall the as-
sumption (19): h € H*(T), s = %! and h.on = 0 on I. In the three-dimensional
case, we should add the following hypothesis: div hoIl = 0 on a neighborhood of T’
where II is the projection on the boundary I'. This assumption is verified in the
physical case of a channel where the velocity is constant on each plane (see remark
4). We saw before expressing the results (see section 2.3) that we needed to extend
the application h to 2. For the proofs, we shall need such a extension verifying
other properties. More precisely we have the following lemma

LEMMA 4.1. For any § > 0, there exists hs, a vector field on Q satisfying
hs € H*(Q), divhs=00nQ, hs=honT,
[b(w, hs, w)| < CL(Q)o||w]f}, YV we W,
|hsla < C1(Q)0. (%)

This result (without (x)) is a classical result for the non-homogeneous Stokes
problem [23]. During the proofs of the existence results, we shall choose § more
precisely to obtain good estimates.

REMARK 4. If we consider the channel Q = {—1 < z < 1} C R? and if the shear
velocity is chosen to be U e, on the upper boundary {z = 1} and —U e, on the
lower boundary {z = —1}, for any § > 0, we have an explicit function hs which
verifies the properties of the lemma 4.1 (see [18], [2]).

PRrOOF:

- At first, since Q is regular with a regular boundary T" (in fact, the hypothesis
of C?%-class is sufficient) we have the existence of a tubular neighborhood of T in
which the projection on I' is well defined (see for instance [1], p.106). Let Tubgl’
this tubular neighborhood of T', II the projection from Twubgl’ on I' and p(z) the
distance from z € Tubgl to T’ (we have p(z) = ||z — II(z)||, Vo € Tubgl).

- Following A. Miranville (in the canal case [18]) let us introduce the function

¢s(s) = exp(%)exp(ﬁ) if s€[0;R[, ¢s(s) =0 ifse[R;+o0l.

This function is C*-class on R*, all its derivatives are bounded and it satisfies

R
| 16sto)tas < . (21)

According to the dimension, we are going to proceed differently. In the three-
dimensional case, let

hs(z) = ¢5(p(x))M(IL(z)).
This vector field is well defined on €. Moreover, it is obvious that h; = h on ' and
that hs € H2(Q) (using the fact that the functions ¢s, p and II belong to C? and
using the regularity of h (see (19))).

- Using the definition of hs, we have div (hs(z)) = ¢s(p(z)) div (h(I1(z))) +
#5(p(x))h(Il(x)).Vp(x). The assumption div (hoII) = 0 allows us to cancel the
first term. To cancel the last term, it is necessary to use the hypothesis h.n = 0,
and show that Vp(z) = ny(;). This last equality results from two remarks. First
of all, the equality is true for a point of the boundary (the boundary is a level line
of p and so Vp is orthogonal to the boundary). Then, differentiating the equality
p(z)? = ||z — II(z)||* and using np(,) = % we deduce the result.
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- Since h € L*(f) and making the change of variable Tubgl' — [0,R] x I,
x — (p(x),I(x)) whose Jacobian is bounded, we deduce by using (21) that

R
/ Ihs()|de < A%, / 165 (p(@))*dz < CIhI%, / I85(p)| dp < C&".
Q p(z)<R 0

The last relation is obtained straightforwardly by using the fact that |uls < C||ul1
for u € V1 (see [18]).

- In the two-dimensional case, O. Ladyzhenskaya [14] proves the existence of a
function € : © — R such that h has a continuation over Q of kind h = curl &.
Moreover, the construction of £ ([14], p. 26) shows us that we can chose £ such that

§lr =0, &(x) = R for p(z) > R,

and the application z — (II(z), £(z)) is a diffeomorphism from Tubgl to I' x [0; R].
As in the three-dimensional case, we introduce the function ¢5 and we let

hs(z) = ¢5(&(2))h(z).

- Using the definition of hs, we have div (hs(z)) = éa(&(z))div (h(z)) +
#h(&(z))h(x).VE(x). Since h = curl € (when d = 2) we cancel the first term.
To cancel the second, we easily remark that curl £.VE& = 0.

The rest of the proof is made exactly in the same way in the three-dimensional
case. (|

The idea of the proof of theorem 2.1 is to use the previous lemma for a fixed
value of § (which will be clarified after): we let v = u + hs so that the boundary
conditions on v are homogeneous. Since hs —h € V4 N H? the theorem 2.1 (we
have a similary formulation for the theorem 2.2) will be proved if we show that for
suitable ¢ there exists an unique solution (¢, u, o) of (11) on [0,T™*[ such that

@ € L*(0,T*; ®,) N L*°(0,T*; ®5),
uwe L*0,T*; Vi N H*) N L>®(0,T*; V1),
o € L*(0,T*;%2) N L™(0,T*; %y).

4.2. Galerkin approximations. We use the Fadeo-Galerkin method. Since @,
Vi and ¥, are separable Hilbert spaces, there exist Hilbertian basis (¢;)i>1, (wi)i>1
and (7;);>1 of @4, V5 and ¥, respectively. Moreover, we can assume that (1););>1 are
the eigenfunctions of the operator —A with domain ®,, (w;);>1 the eigen functions
of the Stokes operator A with domain V4 N H? and (7;);>1 the eigen functions of
the operator —A with domain .

We seek three functions in the form

on(t) =D i(t)i, un(t) =Y Bilbwi, onlt) = vt)m,
=1 =1 =1

where «;, §; and +; are functions of C! class, ¢,(0), u,(0) and o,(0) are the
respective orthogonal projections in L? of ¢, ug and oo on ¥, = Span((¢;)1<i<n),
Vn = Span((w;)i<i<n) and Tp = Span((7;)1<i<n) satisfying the following ordinary
differential equations: For any ¢ € ¥,,, any w € V,, and any 7 € T,

/Q Buipuih + /Q B(¢n)Vitn- Vi) — /Q (tn- V)0 — /Q (hs.V)pn =0,  (22)
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/ Oyt w + b(up, + hs,upn + hs,w) + 2/ 7(pn)D(uy) : D(w)
Q Q

+2/Qn(cpn)D(h5):D(w)+/Qan V= —/Q(w.wn)%,

/6tan:7+ Q(un+h5,an,7)+/ga(an,un—}—hg) :T+/l((pn)0
Q Q Q
+e/Van @ sz/f(son)n(cpn)D(unJrha)W
Q Q

Hn = _azA‘Pn + F'(pn)-
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(23)

(24)

(25)

This problem is a set of ordinary differential equations in (a;)1<i<n, (8i)1<i<n and
(vi)i<i<n- The functions B, n, F', | and f being locally Lipschitz (of C-class),
the Cauchy theorem ensures that there exists a unique solution (¢, un,0,) on a

maximal interval [0, t,].

4.3. Estimates. In this part, we denote ¢, u, v and o instead of ¢, fn, u, and
on. First of all, we use a result for the Cahn-Hilliard equation which allows us to

use the lemma 3.2:

LeEMMA 4.2. For ¢ € ®; solution of the first equation of (11), with any vector
field v(t) € Vg, we have 8ym(p) = 0, and so the average of the order parameter is

conserved all along the time (where this solution exists):
m(p(t)) = m(po)-
4.3.1. H'-estimate for ¢. We use p as a test function in (22):

/6t<pu+/ B(SD)VH-VH—/Q(U-VM)SO—/Q(ha-VM)SD=

From “’ Z|r = 0 and (25), we then deduce that

2|V d
/Btsou——a /0t<pA90+/8t<PF’ ( |290|2>+5/F(90)
Q

We use the assumption B; < B (12) to obtain:

d ([«
- (7|vgo|§+/ F(<,o)) + B1|Vpl3 S/(u-Vu)s0+ ‘/(ha-W)«p‘-
Q Q Q

We remark that, thanks to the boundary conditions

/h5 Vu= / div (phs) / u(hs.n) =0,

then we can write (using successively the lemma 4.2, the Young inequality, the

lemma 3.1 and the lemma 4.1)

/ (hs. V1) ‘ ‘ / (hs- Vi) (9 — m(9))

Following F. Boyer [2], under the assumptions (18) and (15), we have

[Vuls > o®|Agl3 + C1|Vel3 + C1F3(m(po)) /Q F(p) — 2C2Fy(m(y0)),

B
< S IVal3 + C1L (D6 |Vel;.

where C; and Cy are two positive constants which only depend on «, || and F.
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In the sequel, we choose & such that 2C16 < Ca?. The new estimate is writen

d (a? a? B
& (5ot + [ Pe)) +0 (SI0ek+ [ P)) + 2903
Q Q

(26)
+a’Bi|Apf; < / (u.Vu)y + C.
Q

4.3.2. 1.2 -estimate for u. Now, we use u as a test function in (23):

/ Oru.u + b(u, u,u) + b(u, hs,u) + b(hs,u,u) + b(hs, hs,u)
Q

+ 2/917(cp)D(u) : D(u) + 2/97)(90)D(h5) : D(u) —}—/Qa :Vu=— /Q(U.Vp)cp.

Here, we use the fact that u and hy are a divergence-free vector fields and therefore
b(u,u,u) = b(hs,u,u) = 0 (see (20)). From the assumption (13): 7; < n and the
Korn inequality, we deduce

2 [ 9(@)Dw) : Dlw) 2 m|Vu
We use the lemma 4.1 (assuming § < 1 /(8C(2)C1)) and the Poincaré inequality:
b, ha,w)| < Cr(dullf < I Vul3.
Moreover, we have the classical bounds

[bChs, hs, )| < hsla|Vhslaluls < C|Vul < O+ [V,

Q77(<P)17(h5) : D(u)

T
o:Vu|l < —
‘/Q -8

and so, finally

< 1| Vhsla|Vulz < € + 2 |Vul3,

[Vul; + Clol3,

(|U|2> + L vulf < - / (u.Vp)p + Clof3 + C. 27)
dt 2 Q

4.3.3. 1.2 -estimate for 0. We use o as a test function in (24). Since u and hs are
divergence-free and hs.n = u.n =0 on I', we can use (20):

& (152) + ot +aivo < | [ om0 o

+‘/ga(a,u) ol + /ga o, hs) :
Q

The first term of the right member is estimated by

| rom

Moreover, by lemma 3.3, the Cauchy-Schwarz inequality, the Holder inequality and
Sobolev embeddings:

/an(a,u):a

hs) : o|.

< farp|Vulalols < —IWI2 +Clof;.

< 2|al|(0.0, Vu)| < 2lallo]s|ols|Vulz < %lVU@ +a’Cllo]l1,
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where C' does not depend on a (we obtain the same results when hs takes the place
u). Finally, we have

o (";'2) +¢|Val|3 < m |Vu|§ +Clof? +a®Cllo||} + C. (28)

It is important to notice that the constants C' here do not depend on the rheologic
coefficient a. It is the reason for which the particular case a = 0 will be interessant
to study: all the powers of |o|, in the right member will be lower than 2 and we
can apply the Gronwall lemma (see the section 6).
4.3.4. H?-estimate for . Substituting ¢ = A2 into (22):
/ Bep A% — b(u, , A*@) — b(hs, 0, A%p) — / div (B(p)Vp)A?p = 0.
Q Q

Then, integrating by parts the first term, writing Ay = —a?A2%p + A(F'(y)) for
the last one and using Young inequality, we get

d [|Ayl? o’B
d_t(l (’0|2>+a231|A2<p|§ 1|A2 |2

2
+ C('“lglv‘p'oo +1hsl2% | Vol3 + [AF ()3 + [VeVul3).

We have (using the lemma 3.2):

[ul3|VelZ, < |ul3|Vela|AZpl; <

o3 + Clul3|Vel3.

Following [24] and [2], the inequality |V¢|2| V|2 < C||V¢l|} (as we did for o) allows
us to estimate the term |A(F'(y))|2 under the assumptions (16):

IAE (@) < IF" (@)oo Ve gl Vel3 + [F" ()51 A¢l3,
<O+ o =m@EDIVell: + C1 + o —m(p)[22%)|Apl,
< C(1+|Ap)IVellt + CslApl.
By definition of the potential u, we have
IVoVul3 < o®|VolS|VAe[; + [Velg Vel3 F" (¢)%-

For the first term, we use the Agmon’s inequality and the lemma 3.1
IVel2e = V(e =m(@)lz < IV =m@) V(e = m(@)llz < |Ap[2| VA@].
Moreover, integration by parts yields [VAp|2 < |Ap|2|A%p|s and so,

o B
IVol% [VAQ|3 < |Apls/|a%p/? < =2

—— [A%0[3 + C|Ap]y°

For the second, the assumption (16) with the embedding H? C L* show us that:
IVel3 Vel F" (9) |2 < C+ [Apl™|IVellt.

We deduce that there exists a polynomial function P such that

d [|Ay|? o’B
¢ (%) + LA < (199l + [ PUIVEIR) + CslAgl +C. (29)



60 L. CHUPIN

4.3.5. H' -estimate for u. For this estimate, we use Au as a test function in (23):

/ Opu.Au + b(u + hs,u + hs, Au) — 2/ div (n(p)D(u)).Au
Q

— 2/ div (n(p)D(hs)).Au — / divo: Au = / uV.Au.
For the second term, we write:
|b(u, u, Au)| < Cluls|Vuls|Auly < C(|ulz + [Vula)(IVuls + [Vuly*| Auly®)  Aul,
< Olfulf|Auls + Cllully/*| dufs’ < Tl 4u + C(llullf + ull).
With Agmon’s inequality, it follows
[b(w, hs, Au)| < [u]oo|Vhs|2|Aulz < C|Vuls/?|Auls? < %|Au|§ +C|Vul?,

[b(hs,u, Au)| < TelAul} + Clhs[% |Vuf3, and
[b(hs, hs, Aw)] < | Auf3 + Clhs [ Vhl3-

The next term splits into three parts:

/Qdiv (n(go)D(u)).Auz/Qn'(go)chD(u).Au—/Qn(cp)Au.Au+/n(go)Vw.Au.

Q

The assumption (13) on 7 implies fQ n(p)Au.Au > n1|Aul3, so we use successively
lemma 3.2 and the regularity of the Stokes operator [23] to show that we have an
estimate where all the powers of |Au|s and |AZ?¢|y are small enough to apply the
Young inequality and obtain as follows an estimate of kind (30).

On the one hand, after integration by parts (remember that div v = 0 and
u = uy is in V,, subset of the set of eigen functions of A)

[ atoyman] =| [ 4f(e)ve mau

1/2 1/2
< Ol loo|Vely* | 82013 lull1]| Aulz <

< 0'lo[Veploo |7l2] Aul2,

T Auf} +

<m ol3 + CIVgl3llul

On the other hand, using the lemma 3.2 again,

/ "' (9)VepD(u). Au| < - = Bl
o 18

We write the same term with hs as follows:

/Q div (1) D(hs)). Au| = / 7 ()VeoD(hs).Au + / n(0) Ahs. Aul

We have clearly,

| Aul3 + |A%]3 + |Vl Vul;-

¢lz + C(IVhs[l} + [Vel2).

/ div (o) : Au‘ < n—1|Au|§ + C|Vol3.
o 18

We can repeat the same argument with the last term [, pVe.Au:
/ uVp.Au / ApVp.Au| + / V(F(p)).Aul|,

|A%0]5 + C|Vy|3|Apl3.

<a

CkBl

Ui 2
< =



NON NEWTONIAN CAHN-HILLIARD FLOWS 61

The term | Jo V(F(go)).Au| vanishes as u = u,, is a sum of eigenvectors for A with
div u = 0. Finally, from the Sobolev embeddings, we have

d (|Vul3 o’B
% (52 + Du < 2 1A%8 + VIR + ) +C + Vo (30)

4.3.6. H! -estimate for o. Substituting 7 = —Ac into (24). After an integration by
parts and using the result of the lemma 3.3, we have

4 (w2

dt 2

+ |ul6|Vols|Aa|z + |hs|a|Vol|s|Ac|z + (a + 1)|(Vu.o, Ao)| + (1 — a)|(0.Vu, Ag)|

+ (a+ 1)|(Vhs.o,Ac)| + (1 — a)|(6.Vhs, Ac)| + |I'|eo| V|| |2 Va2

Remember that |(Vu.o, Aco)| and |(0.Vu, Ac)| can be controlled by |Vu|s|o|s|Ac|a
(use the same estimate for the similar term with hs). A Young inequality gives

d (IVol3
t \ 2

) + ll|v0'|§ + 6|A0|§ S fz’l’}g'VU'g'AUlQ + f2’r}2|Vh5|2|A0'|2

€
) +11|Val3 + e|Ac)3 < —|Ac|3 + C|Vul3 + C|Vhs|3 + Clulg| Vo3
+ Clhs[3|Voli + CIVuli|ofg + 1V'|o| Velolo]2| Va2 + C.
Finally, we use the Sobolev embeddings again and the Young inequality to write
. . £ .
lulg|Val3 < Z|Aal3 + Clul; +|Vul3 + [Vol3)?,
m

lof§1Vuls < FAufz + C(|Vul3 + |of +[Vol3)®.

And the last term gives,

a231
8

IV@loolol2|Vala < |A%¢]3 + C(IVel3 + |of3|Vol3).

These estimates give

d VUQ £ azB .
L (W) |2 a0l < ™ paufs + T2 A%G + C(lull + ol + IVI): +C.
dt \ 2 2 4 8

(31)

4.4. Estimates for the derivatives. Equations (22), (23), (24) and (25) can also
be written:

( dp, . , .
d_‘i =-P (dlv (B(n)Vun) + div (cpnvn)),

dvy,

£ o -Py (B(vn,vn) + E(pn,v,) — div (0,) + canun>,

doy, v [ 4
d;‘l; = _PT,. (le (Unvn) + ga(an; vn) + l((pn)o—n —eAoy, — fn(‘pn)D('Un)) >

with E(p,v).w =2 [ n(p)D(v) : D(w).

REMARK 5. The fact that all the projectors are orthogonal in L? implies ||P|| < 1
and ||P*|| <1 (as linear operator). More precisely, Py, , Py, and Py, are projectors
respectively in, ®1, V; and X for any s > 0. So, we have:

1Py, llz@ e <1, [Pvlleovevy) <1, 1P e x) <1,
1Py, |z, ,e) <1, [P leevevy <1, 1PE lloes,sny < 1.
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4.4.1. L2-estimate for O;p,. We first show that if ¢,, and v, are regular enough,
for example {¢,} bounded in L?(0,t;®4) N L*(0,t;®3) and {v,} bounded in
L2(0,t; V1 N H?), then we have an estimate

{8¢pn} bounded in L?(0,t; ). (32)

Indeed, d;¢, has the same regularity than div (B(p,)VAg,) (the other terms are
clearly more regular) and since

div (B(psn)VA@,) = B'(¢n)Ver VAp, + AQ(Pm
we obtain a bound on this term using interpolation results: {¢,} is bounded in

L*(0,t; ®3) which implies in particular {Vy,VA¢p,} bounded in L2(0,t; ®;).

4.4.2. L2%-estimate for O;v,. To obtain this estimate, we assume first that we have
{¢n}, {vn} and {o,} bounded in L?(0,t;®,) N L>(0,t;®2), L2(0,t;V1 N H?) N
L>=(0,t; V1) and L?(0,t; %) respectively. Using the products of Lebesgue spaces
(for example if d < 4, then H' x H' C L?), we obtain directly a bound for {v,,.Vv,},
{uVen}, {Ve,Vu,} and {Av,} in L?(0,t; L?), and so
{div ((¢n)D(n))} = {1 (¢n) VeV, +n(pn)Av, } is bounded in L?(0,t; L?)

which proves that

{8sv,} is bounded in L*(0,; V). (33)

4.4.3. L2-estimate for ;0. Of course, when we have {v, } is bounded in L?(0,¢; V1N
H?)NL*(0,t; V1) and {0} is bounded in L?(0,¢; £2)NL>(0,t; £1) then with simple
arguments like the above we deduce that:

L2(0,t; H?) x L>=(0,t; H') C L*(0,t; H') then {v,0,} is bounded in L?(0,t; H'),

L3(0,t; HY)x L™(0,t; H') C L*(0,t; L?) then {Dv,.0,} is bounded in L?(0,t; L?),

and more generally, {g,(0n,v,)} is bounded in L2(0,¢; L?). The other term are
clearly bounded in L2(0,t; L?), we deduce

{840, } is bounded in L*(0,t; %). (34)
4.5. Passing to the limit. We are going to show now the result in the case a # 0:
if we define the total energy of the system by

o

2 . 1 1
2(t) = Gl + | Floa) + 3lloall + 3l

we see that the sum of inequalities (26), (27), (28), (29), (30) and (31) has the
following form (P is a polynomial function):

o?B; m €

2+
This estimate shows us that there exists a 7* > 0 such that
{¢n} is bounded in L2(0,T*; ®,) N L>(0,T*; &),
{v,} is bounded in L2(0,T*; Vi N H?) N L>®(0,T*; V1),
{0} is bounded in L*(0,T*; ) N L>®(0,T*; ;).
Using the inequalities (32), (33), (34), it follows that {Oyn}, {Osvn}, and {80, } are
bounded in L2(0,T*;®,), L?(0,T*;V,) and L?(0,T*;%,) respectively. We apply



NON NEWTONIAN CAHN-HILLIARD FLOWS 63

the classical results (see for instance [22]) to extract subsequences of {¢,}, {vn}
and {0y}, still denoted by {¢n}, {vn} and {o,} such that

©n — @ in L®(0,T*; ®3) weak-*, ¢, — ¢ in L2(0,T*; ®,) weakly,
Oy, — Oyp in L2(0,T*; ®g) weakly, ¢, — ¢ in L2(0,T*;®q) strong a.e.,

vp = v in L®(0,T*; V1) weak-x, v, — v in L?(0,T*;V; N H?) weakly,
Oyvp, — O in L2(0,T*;Vp) weakly, v, — v in L%(0,T*;Vp) strong a.e.,

on — 0 in L®(0,T*; %) weak-*x, o, — o in L%(0,T*;3,) weakly,
8;0, — 0o in L2(0,T*; %) weakly, o, — o in L?(0,T*;%,) strong a.e..

Moreover, a compacity result (see [22]) ensures that ¢, — ¢ € C°([0,T*[; ®>)
weakly, v, — v € C°([0,T*[; V1) weakly and o,, — o € C°([0,T*[;£1) weakly.

Consequently, the limit functions ¢, v and ¢ verify the initial conditions. Indeed,
©n(0) = Ps_(po) converges weakly to ¢(0) in @4, and since P, converges strongly
to the identity, ¢(0) = ¢g. From the strong convergence of v,,, we can pass to the
limit in equation (11), in particular in the quadratic terms like ¢,,.Vu,, v,.Vu,.
This proves the result.

5. Uniqueness of the solution. In this section, we show that the solution ob-
tained in the theorem 2.1 is unique. Let (¢1,v1,01) and (p2,v2,02) be two solutions
of equation (11) such that

p1, P2 € L2(07T7¢4) N LOO(O,T7<I)2),
vy, vg € L2(0,T; Vi N H?) N L®(0,T; V1),
o1, 09 € L*(0,T; ) N L™®(0,T;%,),

with same initial values (pqg,v0,00). The scalar function ¢ = 1 — 2, the vector
function v = v; — v9 and the tensor function ¢ = oy — o2 satisfy the following
relations: For any 9 € ®3, any w € V; and any 7 € ¥4,

/QatSO ,‘vb + b(’U;SOl;w) + b('UQ,QD, ¢)
—a? [ (Blen) - Ble) VAV - [ BloaVAeYe (39
Q Q
+/(BF”(¢1) —BF"(st))Vsol-Vw+/ BF"(p2)V.Vyp = 0,
Q Q
/ Ow.w+b(v,v1, w) + blve,v,w) — / div o.w
Q Q
2 / (n(e1) = n(2)D(w1) : D(w) +2 | n2)D(w) : Dw)  (36)
—a /(w Vip1)Ap — a /(w Vp)Aps,
/5t0 T+b(v,01,7) + b(ve, 0,7 /l p2)0 : T+/(l(901) —1(p2))or : T
+E/QV0‘ V7T + /Q(ga(a,vl) + ga(o2,v)) : T

- / (Fr(er) — F(p2)) D) : 7+ / f1(2)D() - 7,
Q Q 3
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together with zero initial conditions, ¢(0) = 0, v(0) =0, ¢(0) = 0. For i = 1 or 2,
we have ¢; € C([0,T] x Q) and so there exists R > 0 such that
loi(t,)loo <R, loi®)ll2 <R, Jvi®)lls <R, los(t)[lL < R
5.1. Estimate on ¢; — 2. We take —a?Agp as a test function in (35), we use the
assumption (12) on B: By < B to deduce:
d (o 2 4 2 2
7 |7 Velz | a7 BiVAgl; < o”fula| Verls| Al
+ o oa]6| Vipl2| Apls + @ |B'os [0l oo | VAL 2| VAP
+@?|(BF") oo l@l3|Vepils|VAp|2 + 0| BF"|o|Vip|2| VAgls.

In the two first terms of the right member, using |Ap|3 < |Vp|2|VAgp]|2 we have

|Agls < AL + |A0ly*[VAQLE?) < C(IVely* VAR + [Vely VAl ).
In the third term, a straightforward integration by parts gives
VA1l < Aty A% < VR [8%01]5,
and successively, the Agmon’s inequality |p|e < C||<p||}/2||<p||é/2, and the lemma
3.1 (with m(p) = m(p1) — m(p2) = 0) give:
[ploo < OV [VAQL™.
In the same way, we have

lelz < el < llo = m(p)llh < CVla.

The above estimates, the bound R on the solutions and a straightforward applica-
tion of the Young inequality give the following energy estimate

d [a? 9 a*B; 2 2 2 2 4/3 2
L (L 1ve) + T2V AGE < Oofk +IV6R) + ClA%0 49Vl (39

5.2. Estimate of v; — vy. In the same way, we take w = v as a test function in
(36), using the assumption on 7, the fact that b(ve,v,v) = 0 (20) and the Korn
inequality we obtain directly

d (1
% (3108) +mivo < o, 0)l + [ 01900+ 20| [ 6ID@)IDG)
Q Q

+ &2 b(v, 01, Ap)| + ®[b(v, 0, Ags)|.
Using the Holder inequality again, we have

d (1
& (3103 + IV < lol 0t lols + o1 Vol + 200 ol Vel ol
+ | Voilslvl2] Apls + o | Apa]a[v]2| Viploo.
As in the last part, the Sobolev inequalities give
3/2 1/2 /2o (3/2
[olslels < O(lof3 + o]zl olz + o]y Voly + [o]3* [ Vol3).
The lemma 3.1 with m(p) = 0 gives |Vy|oo < C|VAp|s, then following the technics
introduced in the estimate of ¢, we can deduce that

d o*B
L (0B) +mIVol3 < CQol3 + Vol + o) + T VAR (39
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5.3. Estimate of o1 — 09. Finally, substituting 7 = ¢ in (37). As in the proof of
lemma 3.3, we have

/ golo,v1) 10 = 2a/ Tr(Vv,.0.0),
Q

Q
/an(UQ,'U) co=(a+1) /Q Tr(Vv.oz.0) + (a— 1) /Q Tr(Vv.o.03).
Therefore, by Holder inequality we deduce the following estimate
% (3108) + 2108 < 1olalVonalols + 24| Torlalolalols + 2{Tolaloalol
+[(fn)'colls| Vi l2lole + fomz|Vol2]ola + [|oclpls|o]2]ols-

Finally, by Sobolev lemmas, using the bound R on the solutions and the Young
inequality we obtain

o |Q

9 (1o) +eVol <

n
y < S(o + Vol +10B) + 2ol (40)

5.4. Conclusion. Let us add the inequalities (38), (39) and (40) to obtain
y'(t) < h(t)y(t),

where y(t) = |v|2 + %2|Vap|§ + |of2 and h(t) = C + C|A2p |3 € LY(0,T). Tt ’s
clear that the uniqueness of the solution follows from Gronwall’s lemma.

6. The particular case a = 0. In this part, we study the case where the rheo-
logical coefficient a is zero. The result (theorem 2.2) shows us that we need less
regularity on the initial conditions to obtain an existence result. This model for
the evolution of the stress tensor was studied by N. Masmoudi and P.L. Lions [16].
The explanation comes from the fact that the quadratic terms in the constitutive
equation of ¢ nullify (see lemma 3.3).

6.1. Energy-type bounds. We have the same estimates than (26), (27) excepted
that (28) becomes now:

d (lol; +e|Vol2 < Bivu2 + Clof + C. (41)
dt \ 2 R 2
Then, we add the results (26), (27), (41) to deduce an estimate of kind
d
% (19t + [ F)+ B +108 ) + (V4 + Vul +e[Vol) < Clof+C.
In this case, it’s clear that we can show that the sequences {p,}, {v,} and {o,}
are bounded, for any T > 0, respectively in
L>®(0,T;®,) for {¢,}, L*(0,T;Vo)N L*0,T; V) for {v,},
L*(0,T;®,) for {u,}, and L>(0,T;%0)N L*0,T;%;) for {o,}.

To have good estimates on the derivatives, we shall need that ¢ is bounded in
L2(0,T; ®3). This result can be obtained only by using the supplementary hypoth-
esis (17) and the equation (25):

o |VAQ|2 < 2|Vul2 + 2|V ()2
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We have just seen that the term |V |3 is bounded. For the last term, since g satisfies
(17) the embeddings H! C L% and H' C L3 2 hold in the three-dimensional case
and the two dimensional case. We deduce

VF(p)2 < C / (14922 |Vel? < OVl + CIVel27 2| Agl:,
and we obtain that {p,} is bounded in L2(0,T; ®3).

6.2. Bounds on the derivatives. We can show that, if ¢,, and v,, are less regular
than in the part 4.4 then we have an estimate of 9;¢,, in L?(0,¢; ®_;): assume that
{¢n} and {v, } are bounded in L?(0,¢; ®3)NL>(0,¢; ®1) and L?(0, t; V1) respectively
then we can write

| div (pnovn)ll-1 < Cllenllillonlls,  [Idiv (Blpn)Vin)ll-1 < Ballenlls,
hence, we get ||0;¢n||_; < Cllenllil|vnlli + Bzll@n|ls- Time integrating gives

2
18enllz2(0,60_1) < 2C%10nl7 = (0.600) 10nllT2(0,6v1) + 2B2llenllo0,000)-  (42)

As for the estimate of O, we show here a similar result than (33) in which we
have less regularity. We only suppose that {¢,}, {v,} and {o,} are bounded in
L2(0,t; ®3) N L>(0,t;®1), L2(0,¢; V1) N L*>(0,t;Vy) and L2(0,t; $g) respectively
and we clearly obtain

1E(en, vn)ll-1 < 2m2lvnlle,  [1div (on)ll-1 < lonl2,  [lenVinll-1 < llenllllenls.
We know (see lemma 3.4) that for w € V5, we have
[b(vn, vn, w)l2 < Clonlellvnllillwllas2, 1BV, va)ll-a/2 < Clonl2lvalls-
We use here the embedding H~' C H=%?2, to get
18conll_aj2 < 2mallonlls + Clonlz + Clienllillenlls + Clonlallonllr. (43)

Finally, for 0,0 we have a similar result: suppose that {v,} and {o,} are bounded
in L2(0,¢; V1) and L?(0,t; X;) respectively, then we clearly have

ll(en)onll-1 < Clonla, [[Aonll-1 < llonlls,  [1f(@n)n(n)D(wn)ll-1 < Cllonll-

For the two other terms, we remark that, with Sobolev inequalities for 7 € X,
s> % + 1, we can write V7 € ¥,_; C LL>°. We obtain, on the one hand,

(div (00v5),7) < |onl2|vnl2|VTleo; | div (0nvn)ll-s < |on|2|vnl2,
and on the other hand,
(9a(on,vn), 7) < CVuplalonlellTlls,  llgalon, va)ll-s < Cllonllilonlz,
which implies (H™! C H * since s > 1):

10sonll_; < Cllonl2lvnl2 + llvnllilonlz + |onl2 +ellonlls + lonll),
2
||8tan||L2(0,t;E_s) < C(lanl%w(o,t;zo)|Un|%2(0,t;Vo) + ||Un||2L2(0,t;V1)|Un|2L°°(0,t;Eo)

+ |Un|2L2(o,t;zo) + ||Un||2L2(o,t;21) + ||’Un||iz(o,t;vl) .
(44)
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6.3. Passing to the limit. We can also use the inequalities (42), (43), (44):
{0wpn}, {Bvn} and {8y0,} are bounded in L*(0,T;® 1), L*(0,T;V_g4/2) and
L2(0,T;X_,) respectively. Just like above (section 4.5), the compacity results [22]
allows us to conclude the proof in the case a = 0. For instance, a classical compacity
result [22] ensures that

¢n — @ in C°([0,T[; ®;) weakly,
v, = v in CO([0, T; Vi2—a)/4) weakly,
on = o in C°([0,TY; Y(1-5)/2) weakly.
REMARK 6. In the case where ¢ is constant, we can obtain an uniform bound

in time. The term an : Vu of the L?-estimate for u canceling with the term
fQ nfo : Vu of the L2 -estimate for 0. We find the results presented in [16].

6.4. Proof of the corollary. We resume the estimations realized in the proof of
the theorem 2.1 by using the fact that we have a global weak solution. Here, the
assumption d = 2 allows us to obtain better estimates. First of all, in the H?2-
estimate for ¢ (see section 4.3.4) we can use two results due to F. Boyer based on
the fact that H'¥% C L™ for all § > 0 in the two-dimensional case (see [2]):

o’B o
AF (@)l A%l2 < =A%} + OVl (1 +]Vl3), o >0,

) o?B . )
[VoVula|A%pls < TllAzwlé + C|Vol3|Apl3|Vul3 + CIVel; + ClAp[3|Vul3.

The estimate (29) becomes

d |A(P|% (1231 2 12 4/3 9 9 9
— =L A% < 1 o A
dt( 5 ) T 1A%k <CIVely " (1+[Vely") + CIVela|Apl Vil (45)

+ C|Vol3 + C|Ag3|Vul3 + C|Ve|3|uls + C.

For the H!-estimate for u (see section 4.3.5), we juste change the estimate of the
term b(u,u, Au) by

|b(u, v, Au)| < Clu|4|Vu|s| Auls,
n .
< 15l 4uld + Clul3|Vul3 + Cluba|Vul} + Clul3|Vul} + Cluf3|Vul;.

So, the estimate (30) becomes in the two-dimensional case

d (|Vul} o’B
& (52 + ul < S 1A% + CuBITul + ClulaVulf + Clulf{Vu

+ Clul3|Vul3 + C|V¢|3 + C|Vul3 + C|Ve[3|Vul3 + C|Vol|3 + C|Ve|3|Ag|3 + C.

(46)
And for the H!-estimate for o (see section 4.3.6), we deduct easily
d (|Vol|3 ’B
L (V2RY 4 2jacp < T20 A2 + M 4u} + €1 + |Vl + w3 Vo3
dt 2 2 8 4 )
47

+ |ula| Vula| Vo3 + [ula| Vol + [ul3|Vul3| Vol + Va3 +[Vul|ol;
+|Vuli|ol2|Vols + [of3|Vuly + |Vulio3|Vol3 + |of3 + [Vl + o3 Val3).
Finally, adding the equations (45), (46) and (47) we obtain an estimate of kind
2'(t) + @ Bi|A%p|3 + m|Avf3 +e|Acf3 < g(t) + h(t)2(),



68

L. CHUPIN

where z(t) = |Ap[3 + |Vul3 + |Vo|3, and where, using the estimates on the weak
solutions (see theorem 2.2) we have g and h in L},.(0,T). With the Gronwall
lemma, it’s now straightforward to deduce the global existence of strong solution
in the two-dimensional case.
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