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GLOBAL STRONG SOLUTIONS FOR SOME DIFFERENTIAL
VISCOELASTIC MODELS\ast 

LAURENT CHUPIN\dagger 

Abstract. The purpose of this article is to show that there are many differential viscoelastic
models for which the global existence of a regular solution is possible. Although the problem of
global existence in the classic Oldroyd model is still open, we show that by adding a nonlinear
contribution (proposed by R. G. Larson in 1984), it is possible to obtain more regular and global
solutions, regardless of the size of the data (in the two-dimensional and periodic case). Similarly,
more complex appearance models such as those related to ``pom-pom"" polymers are interesting and
mathematically richer: some ``natural"" bounds on the stress make it possible to obtain global results.
On the other hand, in the last part, we show that other models clearly do not seem to fit into this
framework and do not even seem to have a global solution in time. These kinds of results allow us
to highlight the advantages and disadvantages of such viscoelastic fluid models. They can thus help
rheologists and numericists to make choices with new arguments.
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1. Introduction. Throughout this paper we will consider incompressible fluids.
We model the flow using partial differential equations derived from fluid mechanics
principles. More specifically, denoting by v the fluid velocity field, \rho its density, and
by\Sigma the Cauchy stress tensor, the fundamental law of dynamics (Newton's law) yields
the equation \Biggl\{ 

\rho (\partial tv + v \cdot \nabla v) = div\Sigma + f,

div v = 0,
(1)

where f denotes some external forces applied to the fluid. When you consider a
Newtonian solvent in dilute polymer solution, it is usual to write the Cauchy stress
tensor as the sum of three main contributions corresponding to the pressure forces,
the viscous effects, and the elastic ones:

\Sigma =  - p \bfitdelta + \eta sDv + \bfitsigma .(2)

The scalar p is the hydrostatic pressure, Dv is the rate of deformation tensor, Dv =
1
2 (\nabla v+ (\nabla v)\dagger ), \eta s is the kinematic viscosity of the solvent, and \bfitsigma corresponds to the
extra-stress tensor. While (1) is derived from first principles and is thus general, the
precise form of the extra-stress tensor \bfitsigma is given by a constitutive law which depends
on the fluid behavior. For some fluids like polymer melts, biological fluids, etc., the
value of the stress tensor at the present time t depends on the history of the past
deformations (of course with a weaker dependence on the far past) and not only on
the present deformation. In other words, such fluids have memory and property of
elasticity.
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A wide variety of models. The model which is at the base of the models presented
in this article is the nonlinear one described by Oldroyd; see, for instance, [53]. The
Oldroyd-B fluid presents one of the simplest constitutive models capable of describing
the viscoelastic behavior of dilute polymeric solutions under general flow conditions.
It postulated quasi-linear and nonlinear constitutive equations of differential and in-
tegral types related to the external observable variables, the extra-stress tensor \bfitsigma ,
and the strain rate tensor Dv and also elucidated some of the important principles of
invariance. The most iconic model of Oldroyd's work remains the following relatively
simple model (called the Oldroyd-B model):

\lambda 
\bigl( 
\partial t\bfitsigma + v \cdot \nabla \bfitsigma  - \bfitsigma \cdot \nabla v  - (\nabla v)\dagger \cdot \bfitsigma 

\bigr) 
+ \bfitsigma = 2\eta pDv,(3)

where \lambda is the relaxation time and \eta p corresponds to the polymer viscosity.
Several other concepts were also developed by scientists such as Rivlin, Green,

Tobolsky, Ericksen, Lodge, Phan-Thien, Tanner, Giesekus, Doi, Edwards, and their
numerous successors (see the references [6, 18, 44, 22, 61, 62, 64]). It was also recog-
nized that many of these concepts were associated with the Oldroyd approach. The
results that are discussed in this article only relate to such differential models.

Remark 1.1. Note that there are other classes of models that are not discussed
in this article, for instance, the following:

\bullet Models of integral type for which the extra-stress tensor in one time t is
expressed using an integral covering all the past times T < t of the stresses/
strain. The best-known models of this type are included in the K-BKZ model
class, of which the review of Mitsoulis [51] gives an excellent overview. See
also [5] or [62].

\bullet Micro-macros models coupling the mesoscopic scale of kinetic theory to the
macroscopic scale of continuum mechanics. Generally, the extra-stress tensor
takes the form of a particular average computed with the distribution function
over all possible configurations, the associated distribution function being the
solution to a Fokker--Planck equation; see, for instance, [39, 54, 62].

But few mathematical global results. About the Oldroyd-B model, the question of
existence of global solution is still open, even in the two-dimensional case. There are,
nevertheless, partial results: Guillop\'e and Saut [27, 24, 25, 26] proved the existence of
local strong solutions; Fern\'andez-Cara, Guill\'en, and Ortega [20, 21] proved local well-
posedness in Sobolev spaces; Chemin and Masmoudi [10] proved local well-posedness
again but in critical Besov spaces. In these papers, some global existence results hold,
only assuming small data. It may be noted that in the corotational case, that is, using
a peculiar time derivative for the stress tensor (see the definition (53) hereafter), and
only for that case, a global existence result of weak solution has been shown; see the
result of Lions and Masmoudi [43].

Concerning the micro-macro models, coupling the Navier--Stokes equations with
a Fokker--Planck equation, a lot of local existence results are proved; see, for in-
stance, [32, 48, 57, 68]. Recently, Masmoudi [49] proved global existence of weak
solutions to the FENE (finite extensible nonlinear elastic) dumbbell model.

The integral models were also studied in the last fifty years. The first signifi-
cant theoretical results are probably due to Kim [35], Renardy [56], Hrusa and Re-
nardy [29], and Hrusa, Nohel, and Renardy [59, section IV.5]. In all these works
the solution is either local in time or global but with small data. Later, Brandon and
Hrusa [9] studied a one-dimensional model with a singularity in the nonlinearity: they
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obtained global existence results for sufficiently small data. Recently global existence
results for integral law were given in [13].

One of the objectives of the present article is to show that there exist other
realistic viscoelastic fluid models for which global solution existence results can be
shown. This will provide additional arguments for choosing models.

The partially extending strand convention (PEC) model as an example. In the
present article, we will first focus on a typical model, but a discussion of the relevance
of identical results for other more or less complex models is proposed in the last sec-
tions. All models will be written in dimensionless form, and we have chosen to take
all the constants equal to 1 (Reynolds number, Weissenberg number, retardation pa-
rameter, etc.). In practice, all the results announced will be true with any coefficients,
the proofs remaining similar.

The model studied was initially introduced by Larson in [37] to take into account
the partially extensible nature of the polymer strands (without extensibility, we get
the Maxwell model whereas the complete extensibility model corresponds to the Doi--
Edwards model). This model, called the PEC model, is written as1\left\{     

\partial tv + v \cdot \nabla v  - \Delta v +\nabla p = div\bfitsigma 

div v = 0

\partial t\bfitsigma + v \cdot \nabla \bfitsigma  - \bfitsigma \cdot \nabla v  - (\nabla v)\dagger \cdot \bfitsigma + \varepsilon (Dv : \bfitsigma )\bfitsigma = 0.

(4)

The trilinear term \varepsilon (Dv : \bfitsigma )\bfitsigma makes this model a singular case and truly different
from more classical models like the Oldroyd model; see (3). In a relatively surprising
way, we will see that this term has a fundamental role for the stress as soon as \varepsilon 
satisfies 0 < \varepsilon < 2

tr\bfitsigma | t=0
.

For this model, we arrive at a result of the existence, uniqueness, and stability of
a global strong solution, without a smallness assumption on the data. This result, as
all those presented in this paper, is proved in the two-dimensional case and assuming
that the domain is periodic in space. The dimensional condition is constrained by the
known results on the Navier--Stokes equations: it is well known that currently we do
not know how to show the existence of a strong global solution to the Navier--Stokes
equations in the three-dimensional case: it is one of the Millennium Problems. In
contrast, the periodicity condition is a technical condition that allows overcoming
some potential boundary problems: it is likely that the results can be improved by
avoiding this condition. Right now, we don't see how we can do that. More precisely,
we show the following (see Theorem 2.4).

Theorem 1.1. Given any regular initial data for the velocity v| t=0 and for the
stress \bfitsigma | t=0, the system (4) admits a unique strong solution (v, p,\bfitsigma ) defined for all
time t > 0 (in the two-dimensional case). Moreover, the solution's behavior changes
continuously with the initial conditions.

In the three-dimensional case, the result holds if we do not take into account the
convective term v \cdot \nabla v in the velocity evolution equation.

Note that, as usual, the uniqueness of the pressure is obtained by adding a con-
dition, for example, of zero average pressure.

Why can we prove a global existence result for these kinds of models?. The key
point of the proofs is the obtainment of bounds for the stress (see Lemma 2.7). To
obtain these bounds, we will see that this model can be written using a conformation

1See the Appendix for the notations, especially for contractions \cdot or : and for transposition \dagger .
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tensor as unknown instead of the constraint tensor (see subsection 2.3.1). The bound
is then relatively natural. Once we have precise information on stress, we can then
use fine properties on the Navier--Stokes equations (see Lemma 2.8) to deduce limits
on the velocity field. In this lemma, the estimate (29) plays a pivotal role in the
argument. It is this point which is the main difference from the one-dimensional case
studied in [59], where a much simpler estimate holds. The last step consists in showing
that these bounds prohibit the finite time blow-up of solutions (mainly via a Gronwall
estimate).

Notion of a ``good"" solution in the mathematical sense. In 1902, Hadamard [28]
introduced the notion of the well-posed problem. He proposed that mathematical
models of physical phenomena should have the following three properties:

1. a solution exists;
2. it is unique;
3. its behavior changes continuously with the initial conditions.

Clearly, Theorem 1.1 previously announced implies that the PEC problem (4) is
well posed in the Hadamard sense. Moreover, for an evolution model, i.e., a time-
dependent model, it is possible to add another condition:

4. the solution exists for all future times.
The result announced by Theorem 1.1 indicates that the PEC model described by (4)
has this property, and one of the aims of this article is not only to prove this result
but also to show that other viscoelastic models have this property.

It should be noted that, generally speaking, there are models for which the ex-
istence of a solution is only local in time. This fact may in some cases correspond
to a physical reality, for example, when the model ceases to be valid. However, a
model can be described as ``bad"" if one of its physical properties is no longer satisfied.
This will be the case in the example described in subsection 3.4 where we will exhibit
viscoelastic fluid models for which the conformation tensor does not remain positive.

Article outline. The paper is organized as follows: the main section of the paper is
the next section (section 2) in which we precisely present the PEC model, we explicitly
introduce the main results, and we give all the mathematical proofs. In section 3 we
discuss the relevance and possible adaptability of the proof to several other differential
models for polymer flows: Phan-Thien--Tanner, Marrucci, Greco, and Ianniruberto,
pom-pom, etc. Section 4 is a conclusion. It also contains an example of a model
for which the previous study would not be successful. An additional section---the
Appendix---indicates the main notations used in the paper.

2. The partially extending strand convection (PEC) model.

2.1. Structure and origin of the PEC model. The PEC model is based
on molecular theory for a polymeric melt composed of polymers with side branches,
which hinder full retraction. This model was originally introduced by Larson [37].
The idea behind this differential model is that long side branches can limit the extent
to which a polymer strand is able to contract back within the confining tubelike region
postulated by Doi and Edwards. More precisely, on page 554 of [37, equation (41)],
the relation between \bfitsigma and Dv reads

\bigtriangledown 
\bfitsigma +

2\xi \prime 

3G
(Dv : \bfitsigma )\bfitsigma = 0,(5)

where \xi \prime \in (0, 1) and G > 0 are two physical constants. As indicated in [37], con-
stant \xi \prime can be seen as an interpolation parameter between the Lodge model (corre-
sponding to the case \xi \prime = 0) and the Doi--Edwards model (corresponding to the case
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\xi \prime = 1). We also note that in order to take into account the reptational diffusion,
as well as extending convection, it is possible to introduce the following constitutive
equation (see [37, equation (54), page 557]):

\tau 0

\Bigl( \bigtriangledown 
\bfitsigma +

2\xi \prime 

3G
(Dv : \bfitsigma )\bfitsigma 

\Bigr) 
+ \bfitsigma = G\bfitdelta ,

where the linear term arises from the Doi--Edwards or impulsive diffusion (the pa-
rameter \tau 0 corresponding to a relaxation time). To treat a more general case, we
are interested in the constitutive equation where the relation between stress \bfitsigma and
velocity gradient Dv expresses on the following form; see the book [42, page 34] where
such a general model is introduced. This model also corresponds to a special case of
the Oldroyd 8-constant model; see [53]:

\bigtriangledown 
\bfitsigma + a(tr\bfitsigma )\bfitsigma + \varepsilon (Dv : \bfitsigma )\bfitsigma = c(tr\bfitsigma )\bfitdelta .(6)

2.2. Mathematical results for the PEC model. One of the key points in
order to get the theoretical results is that a solution \bfitsigma of (6) can be expressed with
respect to the conformation tensor, denoted by \bfitC (see the subsection 2.3.1 for more
explanations):

\bfitsigma = \gamma (tr\bfitC )\bfitC where
\bigtriangledown 
\bfitC + \alpha (tr\bfitC )\bfitC = \beta (tr\bfitC )\bfitdelta ;

the relations between the functions a, c, the constant \varepsilon , and the functions \alpha , \beta , \gamma will
be given by the system (11).

Example 2.1. For the specific case of the PEC model given by (5), the functions a,

c and the constant \varepsilon are a \equiv 0, c \equiv 0, and \varepsilon = 2\xi \prime 

3G . In that configuration, the

corresponding functions \alpha , \beta , and \gamma are \alpha \equiv 0, \beta \equiv 0, and \gamma (s) = 3G
3(1 - \xi \prime )+s\xi \prime . We

can note that the last relation appears in the works of Larson; see [37, equation (42),
page 554].

We are then first interested in the following type of problem coupling the Navier--
Stokes equations and the previously introduced constitutive law:\left\{           

\partial tv + v \cdot \nabla v  - \Delta v +\nabla p = div\bfitsigma ,

div v = 0,

\bfitsigma = \gamma (tr\bfitC )\bfitC where
\bigtriangledown 
\bfitC + \alpha (tr\bfitC )\bfitC = \beta (tr\bfitC )\bfitdelta ,

v
\bigm| \bigm| 
t=0

= vinit, \bfitC 
\bigm| \bigm| 
t=0

= \bfitC init.

(7)

The first result concerns the uniqueness of the solution to the above problem (7).
In a rigorous way we have (see subsection 2.3.2 for the proof and the Appendix for
the notations of the functional spaces) the following.

Proposition 2.1 (uniqueness and stability). Let T > 0 and d \in \{ 2, 3\} . We
assume that the scalar functions \alpha , \beta , and \gamma are of class \scrC 1 on \BbbR +. If vinit \in L2 with
div vinit = 0 in the sense of distributions, \bfitC init \in L\infty , and if the system (7) possesses
two solutions (v1,\bfitC 1) and (v2,\bfitC 2) such that, for i \in \{ 1, 2\} ,

vi \in L\infty (0, T ;L2), \nabla vi \in L1(0, T ;L\infty ),

\bfitC i \in L\infty (0, T ;L\infty ), \nabla \bfitC i \in L2(0, T ;Lq) (for some q > d),

then they coincide.
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Moreover, the possible solution depends continuously on the initial conditions in
the following sense: if (vi,\bfitC i) is a solution corresponding to the initial conditions
(vi,init,\bfitC i,init), i = \{ 1, 2\} , then there exists a constant C \geq 0 such that, for all
t \in (0, T ),

\| v2(t) - v1(t)\| L2 +\| \bfitC 2(t) - \bfitC 1(t)\| L2 \leq C
\Bigl( 
\| v2,init - v1,init\| L2 +\| \bfitC 2,init - \bfitC 1,init\| L2

\Bigr) 
.

The second result is an existence result of a local (in time) strong solution. It will
be proved in subsection 2.3.3:

Proposition 2.2 (local existence). Let d \in \{ 2, 3\} , r \in (1,+\infty ) and q \in 
(d,+\infty ). We assume that the scalar functions \alpha , \beta , and \gamma are of class \scrC 1 on \BbbR +

and that there exists k \geq 0 such that for any s > 0 we have

| \alpha (s)| \lesssim 1 + sk, | \alpha \prime (s)| \lesssim 1 + sk - 1, | \beta (s)| \lesssim 1 + sk, and | \beta \prime (s)| \lesssim 1 + sk - 1.

(8)

If vinit \in Dr
q and \bfitC init \in W 1,q is a symmetric positive definite almost everywhere,

then there exists T \star > 0 and a solution (v,\bfitC ) to the system (7) on [0, T \star ] satisfying

v \in Lr(0, T \star ;W
2,q), \partial tv \in Lr(0, T \star ;L

q),
\bfitC \in L\infty (0, T \star ;W

1,q), \partial t\bfitC \in Lr(0, T \star ;L
q).

Remark 2.1.
1. The regularity announced in Proposition 2.2 allows us to apply Proposi-

tion 2.1. Indeed, if v \in Lr(0, T \star ;W
2,q) and \partial tv \in Lr(0, T \star ;L

q), then v \in 
W 1,r(0, T \star ;L

q)
\subset L\infty (0, T \star ;L

2). The last inclusion is a consequence of the one-dimensional
Sobolev embedding W 1,r(0, T \star ) \subset L\infty (0, T \star ) for r > 1 and of the assumption
q > 2. On the other hand, if v \in Lr(0, T \star ;W

2,q), then \nabla v \in Lr(0, T \star ;W
1,q).

The Sobolev embedding W 1,q \subset L\infty true as soon as q > d, and the fact
that r > 1 implies that \nabla v \in L1(0, T \star ;L

\infty ). In the same way, if \bfitC \in 
L\infty (0, T \star ;W

1,q) and \partial t\bfitC \in Lr(0, T \star ;L
q), then it is not difficult to prove

that we have \bfitC \in L\infty (0, T \star ;L
\infty ) and \nabla \bfitC \in L2(0, T \star ;L

q). Consequently, the
solution obtained in Proposition 2.2 is unique.

2. As usual, it is certainly possible to obtain a global existence result assuming
that the data are small enough. A proof, similar to that proposed in subsec-
tion 2.3.3, could be based on the fact that for small data (that is, for small R1

and R2---see the proof), the compact set KT,R1,R2
is stable by the function \Phi 

for all time T > 0.
3. Similar results must hold introducing a exterior force f in the right-hand

side of the first equation of (7) as soon as f \in Lr
loc(0,+\infty ;Lq) (see, for

instance, [12] for a similar result).

Next, we announce a global existence result if we add a few more assumptions
(these assumptions are satisfied for the models previously presented).

Proposition 2.3 (global existence). Under the same assumptions as in Propo-
sition 2.2, and if we assume that the real values d, q, and r satisfy

\bullet d

2q
+

1

r
<

1

2
,

\bullet d = 2 OR
\bigl( 
d = 3 but without taking into account the convective term

v \cdot \nabla v
\bigr) 
, and that the functions \alpha , \beta , and \gamma satisfy
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\bullet \beta > 0 OR \beta \equiv 0,
\bullet \gamma > 0 and s \in \BbbR + \mapsto  - \rightarrow s\gamma (s) is one to one bounded,

\bullet lim
s\rightarrow +\infty 

\Bigl( d\beta (s)
s

 - \alpha (s)
\Bigr) 
< +\infty ,

then the solution to the system (7) given by Proposition 2.2 holds taking any T \star > 0.

Finally, we prove that the system (7) is equivalent to the following system, in-
cluding the PEC model (5):\left\{           

\partial tv + v \cdot \nabla v  - \Delta v +\nabla p = div\bfitsigma ,

div v = 0,

\bigtriangledown 
\bfitsigma + a(tr\bfitsigma )\bfitsigma + \varepsilon (Dv : \bfitsigma )\bfitsigma = c(tr\bfitsigma )\bfitdelta ,

v
\bigm| \bigm| 
t=0

= vinit, \bfitsigma 
\bigm| \bigm| 
t=0

= \bfitsigma init,

(9)

and we can conclude this section with the following main result.

Theorem 2.4 (global existence---stress formulation). Let d \in \{ 2, 3\} , r \in (1,+\infty )
and q \in (d,+\infty ) such that

\bullet d

2q
+

1

r
<

1

2
,

\bullet d = 2 OR
\bigl( 
d = 3 but without taking into account the convective term

v \cdot \nabla v
\bigr) 
.

Let \varepsilon > 0 and two scalar functions a and c of class \scrC 1 on \BbbR +. We assume that
\bullet c > 0 OR c \equiv 0,

\bullet 2

\varepsilon 
a
\Bigl( 2
\varepsilon 

\Bigr) 
\geq d c

\Bigl( 2
\varepsilon 

\Bigr) 
.

For any symmetric positive definite tensor \bfitsigma init \in W 1,q such that
\bullet \varepsilon tr\bfitsigma init < 2,

the system (9) admits a unique, stable, global strong solution.

Remark 2.2.
1. The assumptions are naturally verified in the examples presented above. In

particular, the last hypothesis is always true as soon as \varepsilon is small enough,
whereas the previous hypothesis will be valid as soon as xa(x) \geq d c(x) for x
large.

2. It is also important to note that assumption \varepsilon tr\bfitsigma init < 2 is practically not a
smallness assumption on the data. It can read

\bullet either ``for any initial data, there is \varepsilon 0 > 0 such that for \varepsilon \in (0, \varepsilon 0) there
is a unique strong global solution;""

\bullet or ``taking \varepsilon = 2\xi 
tr\bfitsigma init

where \xi \in (0, 1), the system (9) always admits
a solution."" This case corresponds to the PEC model; see [37, pages
553--554].

3. It should be noted, however, that the result is not proven when \varepsilon = 0 and
that a simple limit process \varepsilon \rightarrow 0 cannot remedy it. Indeed, the estimates
obtained in the proof show that, at \varepsilon fixed, the solution is defined for all
time t but can behave as exp(exp(t/\varepsilon )).

2.3. Proofs of the PEC model results.

2.3.1. Link between stress formulation and conformation formulation.
In this subsection, we show that the conformation formulation of the PEC model gives
a solution to the stress formulation. This is one of the key points of the results since
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it allows the mathematical results from both the ``stress models"" framework and the
``conformation model"" framework to be used. More precisely, we prove the following
result.

Proposition 2.5. Let \alpha , \beta , and \gamma be three scalar functions of class \scrC 1 on \BbbR +.
We assume that \gamma is positive and that s \in \BbbR + \mapsto  - \rightarrow s\gamma (s) is one to one. A tensor \bfitsigma 
defined by \bfitsigma = \gamma (tr\bfitC )\bfitC , where \bfitC is the solution of\left\{   

\bigtriangledown 
\bfitC + \alpha (tr\bfitC )\bfitC = \beta (tr\bfitC )\bfitdelta ,

\bfitC 
\bigm| \bigm| 
t=0

= \bfitC init,

satisfies \Biggl\{ \bigtriangledown 
\bfitsigma + a(tr\bfitsigma )\bfitsigma + b(tr\bfitsigma )(Dv : \bfitsigma )\bfitsigma = c(tr\bfitsigma )\bfitdelta ,

\bfitsigma 
\bigm| \bigm| 
t=0

= \gamma (tr\bfitC init)\bfitC init.
(10)

The relations between the functions a, b, c and \alpha , \beta , \gamma are given by, for any s > 0,

a(s\gamma (s)) =
\Bigl( 
1 +

s\gamma \prime (s)

\gamma (s)

\Bigr) 
\alpha (s) - d\gamma \prime (s)

\gamma (s)
\beta (s),

b(s\gamma (s)) =  - 2\gamma \prime (s)

\gamma (s)2
,

c(s\gamma (s)) = \gamma (s)\beta (s).

(11)

Proof of Proposition 2.5. We consider a tensor \bfitC , whose trace is denoted by
s = tr\bfitC , satisfying

\bigtriangledown 
\bfitC + \alpha (s)\bfitC = \beta (s) \bfitdelta .(12)

Taking the trace of (12), we have

dts - 2Dv : \bfitC + s \alpha (s) = d \beta (s).(13)

Now, we introduce the tensor \bfitsigma defined by \bfitsigma = \gamma (s)\bfitC . Due to the definition of the
upper convected derivative (52), we have

\bigtriangledown 
\bfitsigma = \gamma (s)

\bigtriangledown 
\bfitC + \gamma \prime (s) dts\bfitC .

The equations (12) and (13) imply

\bigtriangledown 
\bfitsigma = \gamma (s)

\Bigl( 
 - \alpha (s)\bfitC + \beta (s) \bfitdelta 

\Bigr) 
+ \gamma \prime (s)

\Bigl( 
2Dv : \bfitC  - s \alpha (s) + d \beta (s)

\Bigr) 
\bfitC .

Since \bfitC = \bfitsigma /\gamma (s), we deduce that the quantity \bfitsigma satisfies the following equation:

\bigtriangledown 
\bfitsigma =  - \alpha (s)\bfitsigma + \gamma (s)\beta (s) \bfitdelta + \gamma \prime (s)

\Bigl( 
2Dv :

\bfitsigma 

\gamma (s)
 - s \alpha (s) + d \beta (s)

\Bigr) \bfitsigma 

\gamma (s)
.

It corresponds to (10) as soon as the relations (11) hold, where we have remarked
that tr\bfitsigma = s\gamma (s). We also note that the functions a, b, and c are well defined by (11)
if s \in \BbbR + \mapsto  - \rightarrow s\gamma (s) \in \BbbR + is an injection.
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Remark 2.3. If we replace the upper convected derivative
\bigtriangledown 
\cdot by the derivative \scrD \xi ,

 - 1 \leq \xi \leq \xi (see (53) for the notation), then Proposition 2.5 becomes

\bfitsigma = \gamma (tr\bfitC )\bfitC , \scrD \xi \bfitC + \alpha (tr\bfitC )\bfitC = \beta (tr\bfitC )\bfitdelta 

\Downarrow 
\scrD \xi \bfitsigma + a(tr\bfitsigma )\bfitsigma + \xi b(tr\bfitsigma )(Dv : \bfitsigma )\bfitsigma = c(tr\bfitsigma )\bfitdelta ,

where the relations (11) between a, b, c and \alpha , \beta , \gamma remain unchanged.

2.3.2. Proof of the uniqueness and stability result. In this subsection, we
prove Proposition 2.1 which provides the uniqueness and stability of the solution to
the system \left\{                       

\partial tv + v \cdot \nabla v  - \Delta v +\nabla p = div\bfitsigma ,

div v = 0,

\bfitsigma = \gamma (tr\bfitC )\bfitC ,

\bigtriangledown 
\bfitC + \alpha (tr\bfitC )\bfitC = \beta (tr\bfitC )\bfitdelta ,

v
\bigm| \bigm| 
t=0

= vinit and \bfitC 
\bigm| \bigm| 
t=0

= \bfitC init.

As usual, to obtain uniqueness result, we take the difference of the two solutions
indexed by 1 and 2. The vector v = v1  - v2, the scalar p = p1  - p2, and the tensors
\bfitsigma = \bfitsigma 1  - \bfitsigma 2, \bfitC = \bfitC 1  - \bfitC 2 satisfy the following system:\left\{                     

\partial tv + v \cdot \nabla v1 + v2 \cdot \nabla v  - \Delta v +\nabla p = div\bfitsigma ,

div v = 0,

\bfitsigma = \gamma 1\bfitC + (\gamma 1  - \gamma 2)\bfitC 2,

\partial t\bfitC + v \cdot \nabla \bfitC 1 + v2 \cdot \nabla \bfitC  - \bfitC \cdot \nabla v1  - \bfitC 2 \cdot \nabla v

 - (\nabla v)\dagger \cdot \bfitC 1  - (\nabla v2)
\dagger \cdot \bfitC + \alpha 1\bfitC + (\alpha 1  - \alpha 2)\bfitC 2 = (\beta 1  - \beta 2)\bfitdelta ,

(14)

together with initial conditions v
\bigm| \bigm| 
t=0

= v1,init  - v2,init and \bfitC 
\bigm| \bigm| 
t=0

= \bfitC 1,init  - \bfitC 2,init.
For the sake of simplification, we have noted by \gamma i, \alpha i, and \beta i the values of \gamma (tr\bfitC i),
\alpha (tr\bfitC i), and \beta (tr\bfitC i), respectively.

Taking the scalar product of the first equation of (14) by v in L2, we obtain

1

2
dt
\bigl( 
\| v\| 2L2

\bigr) 
+ \| \nabla v\| 2L2 =  - 

\int 
(v \cdot \nabla v1) \cdot v  - 

\int 
\bfitsigma : \nabla v

\leq \| \nabla v1\| L\infty \| v\| 2L2 +
1

2
\| \nabla v\| 2L2 +

1

2
\| \bfitsigma \| 2L2 .

(15)

The difference \bfitsigma of the stresses is controlled as follows: | \bfitsigma | \leq | \gamma 1| | \bfitC | + | \gamma 1  - 
\gamma 2| | \bfitC 2| . Since the function \gamma is of class \scrC 1 and since the functions \bfitC i are assumed
to be bounded, the values \gamma (tr\bfitC i) are bounded. Below, we denote by sup(f) the
bounded quantity sup | f(tr\bfitC i)| for any function f \in \scrC (\BbbR ,\BbbR ). The differences of kind
\gamma 1  - \gamma 2 are so controlled by sup(\gamma \prime )| tr\bfitC 1  - tr\bfitC 2| \leq sup(\gamma \prime )| \bfitC | . We deduce

\| \bfitsigma \| L2 \leq 
\Bigl( 
sup(\gamma ) + \| \bfitC 2\| L2 sup(\gamma \prime )

\Bigr) 
\| \bfitC \| L2 .(16)
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Now, taking the scalar product of the fourth equation of (14) by \bfitC in L2, we
have

1

2
dt
\bigl( 
\| \bfitC \| 2L2

\bigr) 
=  - 

\int 
(v \cdot \nabla \bfitC 1) : \bfitC +

\int 
(\bfitC \cdot \nabla v1) : \bfitC +

\int 
(\bfitC 2 \cdot \nabla v) : \bfitC 

+

\int 
((\nabla v)\dagger \cdot \bfitC 1) : \bfitC +

\int 
((\nabla v2)

\dagger \cdot \bfitC ) : \bfitC  - 
\int 

\alpha 1| \bfitC | 2

 - 
\int 
(\alpha 1  - \alpha 2)\bfitC 2 : \bfitC +

\int 
(\beta 1  - \beta 2)tr\bfitsigma .

(17)

The first term of the right member can be estimated as follows, using successively

H\"older's inequality; Sobolev's injection H1 \lhook \rightarrow L
2q

q - 2 , which holds for any q > d;
Poincar\'e's inequality; and Young's inequality (the constant cP being a universal con-
stant involved in injections):\bigm| \bigm| \bigm| \int (v \cdot \nabla \bfitC 1) : \bfitC 

\bigm| \bigm| \bigm| \leq \| v\| 
L

2q
q - 2

\| \nabla \bfitC 1\| Lq\| \bfitC \| L2

\leq cP \| \nabla v\| L2\| \nabla \bfitC 1\| Lq\| \bfitC \| L2

\leq 1

4
\| \nabla v\| 2L2 + c2P \| \nabla \bfitC 1\| 2Lq\| \bfitC \| 2L2 .

Since the functions \alpha and \beta are of class \scrC 1, the equality (17) implies

1

2
dt
\bigl( 
\| \bfitC \| 2L2

\bigr) 
\leq 1

4
\| \nabla v\| 2L2 + c2P \| \nabla \bfitC 1\| 2Lq\| \bfitC \| 2L2 + \| \nabla v1\| L\infty \| \bfitC \| 2L2 +

1

4
\| \nabla v\| 2L2

+ 2\| \bfitC 2\| 2L\infty \| \bfitC \| 2L2 + 2\| \bfitC 1\| 2L\infty \| \bfitC \| 2L2 + \| \nabla v2\| L\infty \| \bfitC \| 2L2

+ sup(\alpha )\| \bfitC \| 2L2 + sup(\alpha \prime )\| \bfitC 2\| L\infty \| \bfitC \| 2L2 + sup(\beta \prime )\| \bfitC \| 2L2 .

(18)

Adding the estimates (15), (16), and (18), we deduce an estimate on the following
form:

dt
\bigl( 
\| v\| 2L2 + \| \bfitC \| 2L2

\bigr) 
\leq h(t)(\| v\| 2L2 + \| \bfitC \| 2L2),

where the function h is integrable on (0, T ). Indeed the function h contains quan-
tities like \| \nabla \bfitC 1\| 2Lq or \| \nabla v1\| L\infty \| \bfitC 1\| 2L\infty which are, by the regularity assumption,
integrable. From the initial condition we deduce that, for all t \in (0, T ),

\| v(t)\| 2L2 + \| \bfitC (t)\| 2L2 \leq 
\bigl( 
\| v1,init  - v2,init\| 2L2 + \| \bfitC 1,init  - \bfitC 2,init\| 2L2

\bigr) 
exp
\Bigl( \int T

0

h
\Bigr) 
,

corresponding to the stability result. In particular, the uniqueness result also follows
taking the same initial condition for the two solutions, i.e., vinit = 0 and \bfitC init = 0. \square 

Remark 2.4. Note that the uniqueness and stability results also holds if we replace
the conditions

\nabla vi \in L1(0, T ;L\infty ) and \bfitC i \in L\infty (0, T ;L\infty )
by the conditions

\nabla vi \in L2(0, T ;L\infty ) and \bfitC i \in L4(0, T ;L\infty ).

The function h introduced at the end of the proof remains integrable on (0, T ).
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2.3.3. Proof of the local existence result. This subsection is devoted to the
proof of the local existence result (Proposition 2.2) for the system (7) describing the
fluid in terms of the velocity-conformation tensor (v,\bfitC ). We rewrite the system (7)
as a fixed point equation and apply Schauder's theorem. More precisely, for given
velocity vector v and given tensor \bfitC , we are interested in the following system:\left\{           

\partial tv + v \cdot \nabla v  - \Delta v +\nabla p = div\bfitsigma ,

div v = 0,

\bfitsigma = \gamma (tr\bfitC )\bfitC ,

\partial t\bfitC + v \cdot \nabla \bfitC  - \bfitC \cdot \nabla v  - (\nabla v)\dagger \cdot \bfitC + \alpha (tr\bfitC )\bfitC = \beta (tr\bfitC )\bfitdelta .

(19)

From classical results on the Stokes problem (see, for instance, [23]), the velocity v,
solution of the two first equations of (19) satisfies

\| v\| Lr(0,T ;W 2,q) + \| \partial tv\| Lr(0,T ;Lq) \lesssim \| vinit\| W 2,q + \| div\bfitsigma  - v \cdot \nabla v\| Lr(0,T ;Lq).(20)

We control \bfitsigma from \bfitC using the third equation of (19) and introducing the continuous

and nondecreasing real functions \Gamma (s) = max
0<\tau <s

\gamma (\tau ) and \widetilde \Gamma (s) = max
0<\tau <s

\gamma \prime (\tau ):

\| div\bfitsigma \| Lr(0,T ;Lq) \leq \Gamma 
\bigl( 
\| tr\bfitC \| L\infty (0,T ;L\infty )

\bigr) 
\| \bfitC \| Lr(0,T ;W 1,q)

+ \widetilde \Gamma \bigl( \| tr\bfitC \| L\infty (0,T ;L\infty )

\bigr) 
\| \bfitC \| L\infty (0,T ;L\infty )\| \nabla (tr\bfitC )\| Lr(0,T ;Lq).

As a direct consequence of the definitions of trace and norms on tensorial spaces (see
the Appendix), we note that | tr\bfitC | 2 \leq d| \bfitC | 2 and that | \nabla (tr\bfitC )| 2 \leq d| \nabla \bfitC | 2. We
deduce the following estimate:

\| div\bfitsigma \| Lr(0,T ;Lq) \leq \Gamma 
\bigl( \surd 

d\| \bfitC \| L\infty (0,T ;L\infty )

\bigr) 
\| \bfitC \| Lr(0,T ;W 1,q)

+
\surd 
d \widetilde \Gamma \bigl( \surd d\| \bfitC \| L\infty (0,T ;L\infty )

\bigr) 
\| \bfitC \| L\infty (0,T ;L\infty )\| \bfitC \| Lr(0,T ;W 1,q).

(21)

Given v and \bfitC , the existence of a unique solution \bfitC to the fourth equation of (19)
follows from the application of the method of characteristics. Some details are given
in [21, Appendix, page 26], but we reformulate the estimates taking into account
the specificities of the model. We first compute the L2 scalar product of the fourth
equation of (19) by q| \bfitC | q - 2\bfitC . Then we take gradients in the fourth equation of (19)
and compute the scalar product of the resulting equation with q| \nabla \bfitC | q - 2\nabla \bfitC . By
addition, we find

dt
\bigl( 
\| \bfitC \| qW 1,q

\bigr) 
\lesssim \| \nabla v\| L\infty \| \bfitC \| qW 1,q + \| \nabla 2v\| Lq\| \bfitC \| L\infty \| \nabla \bfitC \| q - 1

Lq

+ (1 + \| \bfitC \| kL\infty )\| \bfitC \| q - 1
Lq + (1 + \| \bfitC \| k - 1

L\infty )\| \nabla \bfitC \| Lq\| \bfitC \| L\infty \| \nabla \bfitC \| q - 1
Lq

+ (1 + \| \bfitC \| kL\infty )\| \nabla \bfitC \| qLq + (1 + \| \bfitC \| k - 1
L\infty )\| \nabla \bfitC \| Lq\| \nabla \bfitC \| q - 1

Lq .

(22)

We note that we used the assumptions | \alpha (s)| \lesssim 1 + sk, | \beta (s)| \lesssim 1 + sk, | \alpha \prime (s)| \lesssim 
1 + sk - 1, and | \beta \prime (s)| \lesssim 1 + sk - 1. Using Young inequalities as well as the Sobolev
continuous embedding W 1,q \lhook \rightarrow L\infty , valid for q > d, the estimate (22) is now written

dt
\bigl( 
\| \bfitC \| qW 1,q

\bigr) 
\lesssim 
\bigl( 
1 + \| \nabla v\| L\infty + \| \nabla 2v\| Lq + \| \bfitC \| kW 1,q

\bigr) 
\| \bfitC \| qW 1,q + 1 + \| \bfitC \| kW 1,q .(23)

On the other hand, we express the time derivative \partial t\bfitC from the fourth equation
of (19) to deduce

\| \partial t\bfitC \| Lq \lesssim 
\bigl( 
1 + \| v\| W 1,q + \| C\| kL\infty 

\bigr) 
\| \bfitC \| W 1,q + 1 + \| C\| kL\infty .(24)
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From (23) and (24), we deduce that there exists a continuous function \scrF such that

\| \bfitC \| L\infty (0,T ;W 1,q) + \| \partial t\bfitC \| Lr(0,T ;Lq)

\leq \scrF 
\bigl( 
\| v\| L1(0,T ;W 2,q), \| v\| Lr(0,T ;W 1,q), \| \bfitC \| Lrk(0,T ;W 1,q)

\bigr) 
.

(25)

We conclude the proof by introducing a compact convex set KT,R1,R2 for which
the application \Phi : (v,\bfitC ) \mapsto  - \rightarrow (v,\bfitC ) satisfies \Phi (KT,R1,R2) \subset KT,R1,R2 . Roughly
speaking, the set KT,R1,R2

is composed of couples of functions (w,\bfitB ) such that

\| w\| Lr(0,T ;W 2,q) + \| \partial tw\| Lr(0,T ;Lq) \leq R1, \| \bfitB \| L\infty (0,T ;W 1,q) + \| \partial t\bfitB \| Lr(0,T ;Lq) \leq R2.

From the previous estimates (20), (21), and (25), if (v,\bfitC ) \in KT,R1,R2 , then, for R1

and R2 large enough and for T small enough, (v,\bfitC ) \in KT,R1,R2 . This is the key to
prove that the application \Phi has a fixed point and then that the system (7) has a
solution local in time; see [12, 21, 24, 25] for similar proofs.

2.3.4. Proof of the global existence result. In this subsection, we prove
Proposition 2.3. The proof consists in developing estimates obtained in Proposition 2.2
for the velocity v and for the conformation tensor \bfitC which are finite for any finite
time. It is decomposed into several parts. The three first lemmas treat the unknowns
velocity/stress/conformation as decoupled unknowns: Lemma 2.6 gives estimates on
the conformation \bfitC . In Lemma 2.7 we obtain a bound for the stress whereas in
Lemma 2.8 we obtain regularity estimates for the velocity. We conclude the proof of
Proposition 2.3 by obtaining a bound on the solution (v,\bfitC ) of the coupled system (7);
see Proposition 2.9.

Lemma 2.6. Let d \in \{ 2, 3\} , q > d, and r > 1. Let \bfitC init \in W 1,q and v such that
\nabla v \in L1(0, T \star ;L

\infty )\cap Lr(0, T \star ;W
1,q). Let \alpha and \beta be two scalar functions of class \scrC 1

on \BbbR + such that \beta > 0 or \beta \equiv 0.
If the initial condition \bfitC init is a symmetric positive definite matrix, then the

solution \bfitC of the equation \left\{   
\bigtriangledown 
\bfitC + \alpha (tr\bfitC )\bfitC = \beta (tr\bfitC )\bfitdelta ,

\bfitC 
\bigm| \bigm| 
t=0

= \bfitC init

(26)

remains a symmetric positive definite matrix for all time t \in [0, T \star ] and all x \in \BbbT d.
Moreover, assuming

lim
s\rightarrow +\infty 

\biggl( 
d\beta (s)

s
 - \alpha (s)

\biggr) 
< +\infty ,

we have, for any t \in (0, T \star ),

\| \bfitC \| L\infty (0,t;L\infty ) \lesssim exp
\Bigl( 
\| \nabla v\| L1(0,t;L\infty )

\Bigr) 
,

\| \nabla \bfitC \| Lr(0,t;Lq) \lesssim 
\Bigl( 
1 + \| \nabla 2v\| Lr(0,t;Lq)

\Bigr) 
exp
\Bigl( 
\| \nabla v\| L1(0,T \star ;L\infty )

\Bigr) 
.

(27)

Proof of Lemma 2.6. The proof of the positiveness of the conformation tensor \bfitC 
is given by Hulsen (see [31]) in the three-dimensional case. It can adapt as in the
two-dimensional case.

In order to obtain the first estimate of (27), we take the scalar product of (26)
by q| \bfitC | q - 2\bfitC :

dt| \bfitC | q + q\alpha (tr\bfitC )| \bfitC | q = q\beta (tr\bfitC )tr\bfitC | \bfitC | q - 2 + q| \bfitC | q - 2(\bfitC \cdot \nabla v +\nabla v\dagger \cdot \bfitC ) : \bfitC .
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Since \bfitC is symmetric positive definite, we can use the equivalence between tr\bfitC 
and | \bfitC | ; see relations (51). We deduce

dt| \bfitC | q \leq 2q| \nabla v| | \bfitC | q + q

\biggl( 
d\beta (tr\bfitC )

tr\bfitC 
 - \alpha (tr\bfitC )

\biggr) 
| \bfitC | q.(28)

If lims\rightarrow +\infty (d\beta (s)s  - \alpha (s)) < +\infty , then, due to the positiveness of tr\bfitC and the conti-
nuity of \alpha and \beta , we have

d\beta (tr\bfitC )

tr\bfitC 
 - \alpha (tr\bfitC ) \lesssim 1.

The estimate (28) becomes

dt| \bfitC | q \lesssim 2q| \nabla v| | \bfitC | q + q| \bfitC | q.

Note that the symbol \lesssim introduced here does not depend on the integer q. Integrating
with respect to the space variable, we have

dt\| \bfitC \| qLq \lesssim q
\bigl( 
2\| \nabla v\| L\infty + 1

\bigr) 
\| \bfitC \| qLq .

We then have dt\| \bfitC \| Lq \lesssim 
\bigl( 
2\| \nabla v\| L\infty + 1

\bigr) 
\| \bfitC \| Lq so that

\| \bfitC \| L\infty (0,T ;Lq) \lesssim \| \bfitC init\| Lqexp

\Biggl( \int T

0

\bigl( 
2\| \nabla v\| L\infty + 1

\bigr) \Biggr) 
\lesssim exp

\bigl( 
\| \nabla v\| L1(0,t;L\infty )

\bigr) 
.

Since \bfitC init \in W 1,q \subset L\infty , the last estimate does not depend on q; passing to the limit
q \rightarrow +\infty , we deduce the first estimate.

Finally, to obtain the second estimate of (27), we now take the gradients of (26)
and compute the scalar product in \BbbR d\times d\times d with q| \nabla \bfitC | q - 2\nabla \bfitC :

dt| \nabla \bfitC | q \leq 3q| \nabla v| | \nabla \bfitC | q + 2q| \nabla 2v| | \bfitC | | \nabla \bfitC | q - 1 + q| \alpha (tr\bfitC )| | \nabla \bfitC | q

+ q| \alpha \prime (tr\bfitC )| | \nabla (tr\bfitC )| | \bfitC | | \nabla \bfitC | q - 1 + q
\surd 
d| \beta \prime (tr\bfitC )| | \nabla (tr\bfitC )| | \nabla \bfitC | q - 1.

Note that from the previous bound \| \bfitC \| L\infty (0,T ;L\infty ) \lesssim 1, we have | f(tr\bfitC )| \lesssim 1 for any
continuous function f , like \alpha , \alpha \prime , or \beta \prime . We deduce the following estimate:

dt| \nabla \bfitC | q \lesssim (| \nabla v| + 1)| \nabla \bfitC | q + | \nabla 2v| | \nabla \bfitC | q - 1.

Here, the coefficient hidden behind the symbol \lesssim depends on the integer q (but that
does not matter here). After integration in the space variable, we deduce

dt\| \nabla \bfitC \| qLq \lesssim (\| \nabla v\| L\infty + 1)\| \nabla \bfitC \| qLq + \| \nabla 2v\| Lq\| \nabla \bfitC \| q - 1
Lq .

We multiply by \| \nabla \bfitC \| r - q
Lq and use the Young inequality abr - 1 \leq 1

ra
r+ r - 1

r br in order
to have

dt\| \nabla \bfitC \| rLq \lesssim (\| \nabla v\| L\infty + 1)\| \nabla \bfitC \| rLq + \| \nabla 2v\| rLq .

The Gronwall lemma allows us to conclude.
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Remark 2.5. Note also that the proof of the positiveness of the conformation
tensor \bfitC presented by Hulsen uses the assumption \beta > 0. But it is not difficult
to adapt the proof to the case where \beta is identically zero. On the other hand, if \beta 
changes sign, the result can be false. We will see in section 4 an example where the
term \beta changes sign and where \bfitC does not remain positive.

Lemma 2.7. Let \bfitsigma : (0, T \star )\times \BbbT d  - \rightarrow \BbbR d\times d be defined by\left\{       
\bfitsigma = \gamma (tr\bfitC )\bfitC ,

\bigtriangledown 
\bfitC + \alpha (tr\bfitC )\bfitC = \beta (tr\bfitC )\bfitdelta ,

\bfitC 
\bigm| \bigm| 
t=0

= \bfitC init.

We assume that \alpha , \beta , and \gamma are three scalar functions of class \scrC 1 on \BbbR + such that
\beta > 0 or \beta \equiv 0, and

s \mapsto  - \rightarrow s\gamma (s) is bounded.

If the initial condition \bfitC init \in W 1,q is a symmetric positive definite matrix, then the
stress \bfitsigma is bounded:

\| \bfitsigma \| L\infty (0,T \star ;L\infty ) \lesssim 1.

Proof of Lemma 2.7. We perform the proof of the L\infty -estimate of the stress \bfitsigma 
point by point (for simplicity we note here \bfitC and \bfitsigma instead of \bfitC (t, x) and \bfitsigma (t, x),
respectively). Due to first part of Lemma 2.6, we know that \bfitC and then \bfitsigma are
symmetric positive definite matrices. Consequently, | \bfitsigma | \leq tr\bfitsigma (see relations (51)) and
since we have defined the stress by \bfitsigma = \gamma (tr\bfitC )\bfitC , we deduce that | \bfitsigma | \leq tr\bfitC \gamma (tr\bfitC ).
The assumption on \gamma allows us to conclude that | \bfitsigma | \lesssim 1.

Lemma 2.8. Let d \in \{ 2, 3\} , r \in (1,+\infty ), and q \in (d,+\infty ) such that d
2q + 1

r < 1
2 .

We assume that

d = 2 OR
\Bigl( 
d = 3 but without taking into account the convective term v \cdot \nabla v

\Bigr) 
.

If vinit \in Dr
q and \bfitsigma \in Lr(0, T \star ;W

1,q) \cap L\infty (0, T \star ;L
\infty ), then the solution v of the

Navier--Stokes equation \left\{     
\partial tv + v \cdot \nabla v  - \Delta v +\nabla p = div\bfitsigma ,

div v = 0,

v
\bigm| \bigm| 
t=0

= vinit

satisfies the estimates, for any t \in (0, T \star ),

\| \nabla v\| L\infty (0,t;L\infty ) \lesssim 1 + \| \bfitsigma \| L\infty (0,t;L\infty ) ln(e + \| \nabla \bfitsigma \| Lr(0,t;Lq)),

\| \nabla 2v\| Lr(0,t;Lq) \lesssim \| \nabla \bfitsigma \| Lr(0,t;Lq).
(29)

Proof of Lemma 2.8. The proof is based on the integral representation of the
solution to the Navier--Stokes equation:

v(t, x) = et\Delta vinit +

\int t

0

e(t - s)\Delta Pdiv f(s, x) ds,(30)

where we have introduced f := \bfitsigma  - v \otimes v.
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\bullet The first estimate is obtained as follows: due to the analyticity of the heat

kernel, and using the Sobolev injections (essentially W
d
q ,q \lhook \rightarrow L\infty ), we successively

prove that

\| et\Delta \Delta \alpha g\| L\infty \lesssim t - \alpha \| g\| L\infty and \| et\Delta \Delta g\| L\infty \lesssim t - 
q+d
2q \| \nabla g\| Lq .

These two estimates make it possible, from (30) and as soon as d
2q +

1
r < 1

2 , to obtain

(see [13, 14] for similar results)

\| \nabla v(t, \cdot )\| L\infty \lesssim 1 + \| f\| L\infty (0,t;L\infty ) ln
\bigl( 
e + \| \nabla f\| Lr(0,t;Lq)

\bigr) 
.(31)

In the two-dimensional case (d = 2), an analysis of the Navier--Stokes equation implies
that (see [13, 14]) for a.e. t \in (0, T \star )

\| v\| L\infty (0,t;L\infty ) \lesssim 1,

\| \nabla v\| Lr(0,t;Lq(\BbbT 2)) \lesssim 1 for any 1 < q, r < +\infty .

This makes it possible to control the nonlinearity v \otimes v and reduce the control of f
(resp., \nabla f) to that of \bfitsigma (resp., \nabla \bfitsigma ). It results in the first estimate of (29).

In the three-dimensional case (d = 3), we do not take into account the contribu-
tion v \otimes v so that f = \bfitsigma , and the results directly follow from (31).

\bullet The second estimate announced in Lemma 2.8 comes from the integral represen-
tation (30) again and from the fact that the linear operator g \mapsto \rightarrow 

\int t

0
e(t - s)\Delta \Delta g(s) ds

is bounded in Lr(0, T ;Lq) for 1 < q, r < +\infty ; see [41, page 64].

Proposition 2.9. Under the assumptions of Proposition 2.3, the solution (v,\bfitC )
to the system (7) on [0, T \star ] satisfies, for any t \in (0, T \star ),

\| v\| Lr(0,t;W 2,q) \lesssim 1, \| \partial tv\| Lr(0,t;Lq) \lesssim 1,

\| \bfitC \| L\infty (0,t;W 1,q) \lesssim 1, \| \partial t\bfitC \| Lr(0,t;Lq) \lesssim 1.

Proof of Proposition 2.9. Combining the results of Lemma 2.8 and Lemma 2.7,
we deduce that for any t \in (0, T \star ) we have

\| \nabla v\| L\infty (0,t;L\infty ) \lesssim 1 + ln(e + \| \nabla \bfitsigma \| Lr(0,t;Lq)),

\| \nabla 2v\| Lr(0,t;Lq) \lesssim \| \nabla \bfitsigma \| Lr(0,t;Lq).
(32)

The first goal is then to obtain a bound on

y(t) := \| \nabla \bfitsigma \| rLr(0,t;Lq).

We use the stress formulation introduced in subsection 2.3.1; see Proposition 2.5:

\bigtriangledown 
\bfitsigma + a(tr\bfitsigma )\bfitsigma + b(tr\bfitsigma )(Dv : \bfitsigma )\bfitsigma = c(tr\bfitsigma )\bfitdelta .(33)

We first take gradients in (33) and compute the L2 scalar product of the resulting
equation with | \nabla \bfitsigma | q - 2\nabla \bfitsigma . From the bound \| \bfitsigma \| L\infty (0,T \star ;L\infty ) \lesssim 1, we control f(tr\bfitsigma )
for f = a, b, c, a\prime , b\prime , c\prime . Using the H\"older inequality, we find

dt\| \nabla \bfitsigma \| qLq \lesssim (1 + \| \nabla v\| L\infty )\| \nabla \bfitsigma \| qLq + \| \nabla 2v\| Lq\| \nabla \bfitsigma \| q - 1
Lq .
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We next multiply this result by \| \nabla \bfitsigma \| r - q
Lq and use the Young-type inequality xyr - 1 \leq 

1
rx

r + (1 - 1
r )y

r to treat the last term. We deduce

dt\| \nabla \bfitsigma \| rLq \lesssim (1 + \| \nabla v\| L\infty )\| \nabla \bfitsigma \| rLq + \| \nabla 2v\| rLq .

Using estimate (32), we conclude that y\prime (t) \lesssim y(t) ln(e+ y(t))+ y(t) implies that y(t)
is well defined for any time t > 0 (it is bounded by a double exponential function of

kind ee
t

). From Lemma 2.8, we then have for any t \in [0, T \star ]

\| v\| Lr(0,t;W 2,q) \lesssim y(t) \lesssim 1.

We also note that, from (32), we have

\| \nabla v\| L\infty (0,t;L\infty ) \lesssim 1.

In order to obtain the bound on the conformation \bfitC , we use Lemma 2.6 and the two
previous estimates:

\| \bfitC \| L\infty (0,t;W 1,q) \lesssim 1.

The two last bounds follow from (7) expressing \partial tv and \partial t\bfitC with respect to v, \nabla v,
\Delta v, div\bfitsigma , \bfitC , and \nabla \bfitC .

2.3.5. Proof of the main Theorem 2.4. From Proposition 2.3 we know that
there exists a strong solution to the conformation formulation (7) as soon as some
assumptions on the functions \alpha , \beta , and \gamma are satisfied. Moreover, in subsection 2.3.1,
we proved that any solution to the conformation formulation implies a solution to
the stress formulation (9), the link between functions \alpha , \beta , \gamma and functions a, b, c
being given by (11). To prove Theorem 2.4 it suffices to show that the assumptions on
functions a and c correspond to assumptions on \alpha , \beta , and \gamma in Proposition 2.3. Note
that this approach does not show the uniqueness of the solution. However, the proof
of uniqueness may be made independently by following exactly the same method as
for the proof of existence in the conformation formulation; see subsection 2.3.2.

\bullet Let a, c be two scalar functions of class \scrC 1 on \BbbR +, and \varepsilon > 0. We introduce
the three scalar functions \alpha , \beta , and \gamma defined on \BbbR + by

\alpha (s) = (1 + \varepsilon s)
\Bigl( 
a(s\gamma (s)) - d \varepsilon 

2
c(s\gamma (s))

\Bigr) 
, \beta (s) =

c(s\gamma (s))

\gamma (s)

and \gamma (s) =
2

1 + \varepsilon s
,

so that the relations (11) hold with b = \varepsilon .
\bullet Let \bfitsigma init \in W 1,q be a symmetric positive definite tensor. Assuming \varepsilon tr\bfitsigma init <
2 it is possible to define the symmetric positive definite matrix \bfitC init \in W 1,p

by

\bfitC init =
\bfitsigma init

2 - \varepsilon tr\bfitsigma init
,

so that \bfitsigma init = \gamma (tr\bfitC init)\bfitC init.
Consequently, due to subsection 2.3.1, the solution to (7) will be the solution

to (9).
We must therefore prove that functions \alpha , \beta , and \gamma defined above satisfy the

assumptions of Proposition 2.3.
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Since a and c are functions of class \scrC 1 on \BbbR +, and due to the definition of \gamma , it
is clear that \alpha , \beta , and \gamma are of class \scrC 1 too. Moreover the assumption

\bigl( 
c > 0 OR

c \equiv 0
\bigr) 
clearly implies

\bigl( 
\beta > 0 OR \beta \equiv 0

\bigr) 
.

Finally, the other assumptions are direct consequences of the following asymptotic
behaviors, for s \rightarrow +\infty :

\gamma (s) =
2

\varepsilon s
+\scrO 

\Bigl( 1

s2

\Bigr) 
, \alpha (s) = \varepsilon 

\Bigl( 
a
\Bigl( 2
\varepsilon 

\Bigr) 
 - d \varepsilon 

2
c
\Bigl( 2
\varepsilon 

\Bigr) \Bigr) 
s+\scrO (1),

and \beta (s) =
\varepsilon 

2
c
\Bigl( 2
\varepsilon 

\Bigr) 
s+\scrO (1).

It should be noted in particular that hypothesis lims\rightarrow +\infty (d\beta (s)/s  - \alpha (s)) < +\infty is
verified because we have assumed that 2/\varepsilon a(2/\varepsilon ) \geq d c(2/\varepsilon ).

3. Global existence results for other models? In this section, we highlight
the fact that the method proposed above to obtain the existence of a solution can
be adapted to other non-Newtonian models. Some are direct corollaries of previous
results (as is the case for PTT-type models; see subsection 3.1) while others require
some intermediate results (for example, to be able to apply the method to the MGI-
type model---see subsection 3.2---or the pom-pom-type polymer, subsection 3.3). We
end this section by showing almost the same type of models for which the positivity
of the conformation is not respected over time; see subsection 3.4.

3.1. The Phan-Thien - Tanner (PTT) model with additive nonlinear
term. The crucial point in modeling is the choice of a suitable constitutive equation
which has a capability to correctly represent nonlinear behavior of the melts. In re-
cent years, significant progress has been made to develop such constitutive equations.
Usual nonlinearities from the Oldroyd model (see (3)) can be described by the PTT
model. This model is an extension of the Oldroyd model to include a function depen-
dent upon tr\bfitsigma , the trace of the polymer stress. More precisely, the constitutive law
for the PTT model (with the additive term whose coefficient is \widetilde \varepsilon > 0) is

\lambda 
\bigtriangledown 
\bfitsigma + f(tr\bfitsigma )\bfitsigma + \widetilde \varepsilon (Dv : \bfitsigma )(\lambda \bfitsigma + \eta p\bfitdelta ) = 2\eta pDv.(34)

There are three forms of the function f(tr\bfitsigma ) found in the literature:

f(s) =

\left\{                 

1 +
\kappa \lambda 

\eta p
s Linear PTT,

1 +
\kappa \lambda 

\eta p
s+

1

2

\Bigl( \kappa \lambda 
\eta p

s
\Bigr) 2

Quadratic PTT,

exp
\Bigl( \kappa \lambda 
\eta p

s
\bigr) 

Exponetial PTT,

where \kappa \in [0, 1] is a model parameter. Parameter \kappa is inversely proportional to the
extensional viscosity of the fluid, and the linear or quadratic models only approach
the exponential form well at low deformations. The linear and exponential forms of
the PTT model are extensively used and are the two forms mentioned in [63, sections
5.6.5 and 5.6.6] about the PTT model. The exponential model was first proposed by
Phan-Thien [55] a year after the linear model of [65]. The quadratic form is far less
widely used or mentioned in the literature, but it is used, for example, to model the
wire-coating process in [52], where all three PTT forms are investigated.
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We remark that this type of model (34) falls within the framework that we have
described in this article, and that consequently we can apply the result of Theorem 2.4.

Indeed, introducing \widetilde \bfitsigma = \lambda \bfitsigma +\eta p\bfitdelta , (34) takes the form of the third equation of (9)
with

a(s) =
1

\lambda 
f
\Bigl( s - d\eta p

\lambda 

\Bigr) 
, c(s) =

\eta p
\lambda 
f
\Bigl( s - d\eta p

\lambda 

\Bigr) 
, and \varepsilon =

\widetilde \varepsilon 
\lambda 
.

Under the condition \widetilde \varepsilon d \eta p \leq 2\lambda , corresponding to the condition 2
\varepsilon a
\bigl( 
2
\varepsilon 

\bigr) 
\geq d c

\bigl( 
2
\varepsilon 

\bigr) 
, it

is then possible to apply Theorem 2.4 and deduce the existence of a unique global
strong solution.

Remark 3.1.
1. The same results are also true with other classic models:

i. the FENE-P (FENE-Peterlin) proposed by Bird, Armstrong, and Has-
sager [7] (see also recent theoretical results relative to a diffusive case [45]);

ii. the FENE-CR (FENE-Chilcott and Rallison) proposed by Chilcott and
Rallison [11].

If we add a nonlinear term of the form \varepsilon (Dv : \bfitsigma )\bfitsigma (with a possibly very
small \varepsilon positive coefficient), then we have a global existence of a strong solu-
tion for any initial data.

2. In the previousmodels (PEC,Marrucci, Greco, and Ianniruberto, PTT,FENE-
P, or FENE-CR) it is possible to use the derivative \scrD \xi , \xi \not = 0, instead of the
UCM derivative (see (53) for the notation). All the proofs presented in this
paper remain correct. In particular, introducing \widetilde \bfitsigma = \bfitsigma +

\eta p

\xi \lambda \bfitdelta , (34)---with\scrD \xi \bfitsigma 

instead of
\bigtriangledown 
\bfitsigma ---takes the form of (9)3, where we replace \varepsilon by \xi \varepsilon .

3.2. The Marrucci, Greco and Ianniruberto (MGI) type model. The
incorporation of additional mechanisms, such as contour length fluctuations and stress
release (see [18]) leads to a precise description of the viscoelastic properties under the
flow. Many modifications such as taking into account the finite stretchability of the
chain have also been introduced. Thus, in [47], Marrucci, Greco, and Ianniruberto
argued that a force balance on the entanglement nodes should be fulfilled, resulting
in a modified \bfitQ tensor. In this manner, a better agreement with experimental data
for the normal stress ratio could be obtained. The modified \bfitQ tensor is given with
respect to the Finger tensor \bfitC , measuring the deformation of a fluid element, by

\bfitQ =

\surd 
\bfitC 

tr
\surd 
\bfitC 

with
\bigtriangledown 
\bfitC = 0.(35)

The tensor
\surd 
\bfitC here appearing is a special case of the Seth tensor \bfitC a sometimes pro-

posed in phenomenological equations for rubber or for viscoelastic liquids; see [38].
Larson [36] relates the

\surd 
\bfitC tensor to the disclination lines of liquid crystal, which also

carry a constant tension. The other characteristic of the choice (35) is the ratio defin-
ing \bfitQ . This point is essential from a theoretical point of view since it clearly implies
a L\infty bound on the tensor \bfitQ . According to Marrucci, Greco, and Ianniruberto [46],
this form of writing is a generalization of the linear case ``\bfitQ = \bfitC "" to large deforma-
tions. More exactly, they claim that during retraction, the number of strands per unit
volume decreases in inverse proportion to the average increase of strand length scale
with tr

\surd 
\bfitC . The stress tensor \bfitsigma obeys time-strain separability and is obtained by

\bfitsigma = G\Lambda (t)\bfitQ ,
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where G > 0 is a physical constant and \Lambda is a function. In practice, the function \Lambda 
is a solution of a differential equation coupled with the velocity and/or the stress; see
for instance [47, 65, 66]. Nevertheless, following the remark given in [47, equation 7,
page 100], ``The reptation function \Lambda is not very different from a single exponential
\Lambda (t) = e - t/\tau 0 ,"" we will assume that the function \Lambda is any positive and regular function.
We are therefore interested in the following system:\left\{               

\partial tv + v \cdot \nabla v  - \Delta v +\nabla p = div\bfitsigma ,

div v = 0,

\bfitsigma = \Lambda (t)

\surd 
\bfitC 

tr
\surd 
\bfitC 

, where
\bigtriangledown 
\bfitC = 0,

v
\bigm| \bigm| 
t=0

= vinit, \bfitC 
\bigm| \bigm| 
t=0

= \bfitC init.

(36)

3.2.1. Mathematical results for the MGI model. Following the same ideas
as in the previous section, we have the following results.

Proposition 3.1 (uniqueness and stability). Let T > 0 and d \in \{ 2, 3\} . We
assume that \Lambda is a positive function of class \scrC 1 on \BbbR +. If vinit \in L2 with div vinit = 0
in the sense of distributions, \bfitC init \in L2 is symmetric positive definite almost every-
where, and if the system (36) possesses two solutions (v1,\bfitC 1) and (v2,\bfitC 2) such that,
for i \in \{ 1, 2\} ,

vi \in L\infty (0, T ;L2), \nabla vi \in L1(0, T ;L\infty ),

\bfitC i \in L\infty (0, T ;L\infty ), \nabla \bfitC i \in L2(0, T ;Lq) (for some q > d),

then they coincide.
Moreover, the possible solution depends continuously on the initial conditions in

the following sense: if (vi,\bfitC i) is solution corresponding to the initial conditions
(vi,init,\bfitC i,init), i = \{ 1, 2\} , then there exists a constant C \geq 0 such that, for all
t \in (0, T ),

\| v2(t) - v1(t)\| L2 +\| \bfitC 2(t) - \bfitC 1(t)\| L2 \leq C
\Bigl( 
\| v2,init - v1,init\| L2 +\| \bfitC 2,init - \bfitC 1,init\| L2

\Bigr) 
.

Proposition 3.2 (local existence). Let d \in \{ 2, 3\} , r \in (1,+\infty ), and q \in 
(d,+\infty ). We assume that \Lambda is a positive function of class \scrC 1 on \BbbR +. If vinit \in Dr

q

and \bfitC init \in W 1,q is symmetric positive definite almost everywhere, then there exists
T \star > 0 and a strong solution (v,\bfitC ) to the system (36) in [0, T \star ] satisfying

v \in Lr(0, T \star ;W
2,q), \partial tv \in Lr(0, T \star ;L

q),
\bfitC \in L\infty (0, T \star ;W

1,q), \partial t\bfitC \in Lr(0, T \star ;L
q).

Theorem 3.3 (global existence). Under the same assumptions as in Proposi-
tion 3.2, if we assume that

\bullet d

2q
+

1

r
<

1

2
,

\bullet d = 2 OR
\bigl( 
d = 3 but without taking into account the convective term

v \cdot \nabla v
\bigr) 
,

then the solution given by Proposition 3.2 holds taking any T  \star > 0.

3.2.2. Proofs of the MGI model results. Recall that the MGI model (36) is
based on the following constitutive relation expressing the stress \bfitsigma :

\bfitsigma = \Lambda (t)

\surd 
\bfitC 

tr
\surd 
\bfitC 

, where
\bigtriangledown 
\bfitC = 0.
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Since this model makes the root of \bfitC appear, we first note that the tensor \bfitC remains
symmetric positive definite if it is initially the case (apply Lemma 2.6). This obser-
vation suggests that the law is consistent. In a first lemma (Lemma 3.4), we will see
that it is possible to reformulate this constitutive relation into a differential equation
linking \bfitsigma , \bfitsigma 2 and Dv. Next, we will see in Lemma 3.5 how to estimate \nabla \bfitsigma using
\nabla (\bfitsigma 2).

Reformulation in terms of the stress tensor. For the model (36), it is possible to
derive a differential equation for the stress tensor \bfitsigma . The next idea follows the same
kind of formulation as that presented in [47].

Lemma 3.4. Let \Lambda : (0, T ) \rightarrow \BbbR be a positive function of class \scrC 1.
If \bfitsigma is defined by

\bfitsigma = \Lambda (t)

\surd 
\bfitC 

tr
\surd 
\bfitC 

, where
\bigtriangledown 
\bfitC = 0,

then we have

\bigtriangledown 
(\bfitsigma 2) - 2\Lambda \prime 

\Lambda 
\bfitsigma 2 +

2

\Lambda 
(Dv : \bfitsigma )\bfitsigma 2 = 0.(37)

Remark 3.2. In the two-dimensional case, the Cayley--Hamilton theorem implies
that

\bfitsigma 2  - (tr\bfitsigma )\bfitsigma + (det\bfitsigma )\bfitdelta = 0.

Since tr\bfitsigma = \Lambda (t) and Dv : \bfitdelta = div v = 0, we have \Lambda (t)Dv : \bfitsigma = Dv : \bfitsigma 2. Conse-
quently, (37) can be written in terms of \bfitsigma 2 without intervening \bfitsigma . From a numerical
point of view, this remark can make it possible to treat this model almost as simply
as the PEC model previously studied.

Proof of Lemma 3.4. We introduce \bfitB =
\surd 
\bfitC and \bfitQ = \bfitB 

tr\bfitB . Deriving \bfitQ 2 with
respect to the time (using precisely the convective derivative dt), we obtain

dt(\bfitQ 
2) = dt

\Bigl( \bfitB 2

(tr\bfitB )2

\Bigr) 
=

dt(\bfitB 
2)

(tr\bfitB )2
 - 2

tr (dt\bfitB )

(tr\bfitB )3
\bfitB 2.(38)

Writing the relation
\bigtriangledown 
\bfitC = 0 using the tensor \bfitB , we have

dt(\bfitB 
2) = \bfitB 2 \cdot \nabla v + (\nabla v)\dagger \cdot \bfitB 2.(39)

Multiplying on the left this equation by \bfitB  - 1 and taking the trace, we obtain

dt(tr\bfitB ) = Dv : \bfitB .(40)

Finally, plugging (39) and (40) into (38), we obtain

dt(\bfitQ 
2) =

\bfitB 2 \cdot \nabla v + (\nabla v)\dagger \cdot \bfitB 2

(tr\bfitB )2
 - 2

Dv : \bfitB 

(tr\bfitB )3
\bfitB 2,

which can be completely rewritten in terms of the stress tensor \bfitQ as follows:

\bigtriangledown 
(\bfitQ 2) + 2(Dv : \bfitQ )\bfitQ 2 = 0.

Finally, multiplying this equation by \Lambda (t)2, we deduce the result since \bfitsigma 2 = \Lambda (t)2\bfitQ 2

with \Lambda (t) > 0.
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Gradient of the square root.

Lemma 3.5. Let \bfitsigma : \BbbT d  - \rightarrow \BbbR d\times d be a symmetric positive definite matrix values
function.

If \bfitsigma is of class \scrC 1, then we have the following inequality:

| \nabla \bfitsigma | \leq 1\surd 
2
| \bfitsigma  - 1| | \nabla (\bfitsigma 2)| .(41)

Remark 3.3.
1. If f : \BbbT d \mapsto  - \rightarrow \BbbR is a positive scalar function, the result is obvious since

\nabla (f2) = 2f\nabla f . In particular, inequality (41) is not optimal.
2. If \bfitsigma : \BbbT d  - \rightarrow \BbbR d\times d is not symmetric positive definite then the result is false.

Consider for instance \bfitsigma (x) = ( 1 cos(2\pi x1)
0  - 1

). We have \bfitsigma 2 = \bfitdelta so \nabla (\bfitsigma 2) = 0
whereas \nabla \bfitsigma \not = 0.

Proof of Lemma 3.5. The spatial gradient of a 2-tensor is a 3-tensor. We have

(\nabla (\bfitsigma 2))ijk = \partial i(\bfitsigma jm\bfitsigma mk) = \partial i\bfitsigma jm\bfitsigma mk + \bfitsigma jm\partial i\bfitsigma mk.

Using the notations given in the Appendix, it follows that

(\nabla (\bfitsigma 2))\dagger = (\nabla \bfitsigma )\dagger \cdot \bfitsigma + \bfitsigma \cdot (\nabla \bfitsigma )\dagger .

Multiplying left and right by \bfitsigma  - 1/2 (precisely making a 1-contraction on left and
right) we have

\bfitsigma  - 1/2 \cdot (\nabla (\bfitsigma 2))\dagger \cdot \bfitsigma  - 1/2 = \bfitsigma  - 1/2 \cdot (\nabla \bfitsigma )\dagger \cdot \bfitsigma 1/2\underbrace{}  \underbrace{}  
=\scrA 

+ \bfitsigma 1/2 \cdot (\nabla \bfitsigma )\dagger \cdot \bfitsigma  - 1/2\underbrace{}  \underbrace{}  
=\scrB 

.(42)

Computing the scalar product of the two 3-tensors \scrA and \scrB , we remark that

\scrA 
(3)
: \scrB = \bfitsigma 

 - 1/2
im (\nabla \bfitsigma )\dagger mjn \bfitsigma 

1/2
nk \bfitsigma 

1/2
i\ell (\nabla \bfitsigma )\dagger \ell jp \bfitsigma 

 - 1/2
pk

= \bfitsigma 
 - 1/2
im \bfitsigma 

1/2
i\ell \underbrace{}  \underbrace{}  

=\delta \ell m

(\nabla \bfitsigma )jmn (\nabla \bfitsigma )j\ell p \bfitsigma 
1/2
nk \bfitsigma 

 - 1/2
pk\underbrace{}  \underbrace{}  

=\delta np

,

where we use the fact that \bfitsigma is symmetric. We deduce that \scrA 
(3)
: \scrB = | \nabla \bfitsigma | 2. The

equality (42) is written

| \bfitsigma  - 1/2 \cdot (\nabla (\bfitsigma 2))\dagger \cdot \bfitsigma  - 1/2| 2 = | \scrA | 2 + 2\scrA 
(3)
: \scrB + | \scrB | 2 \geq 2| \nabla \bfitsigma | 2,

which directly implies the desired result.

Uniqueness and stability. The procedure to prove uniqueness and stability results
is similar to the case of the PEC model (see the subsection 2.3.3): we write the
difference between two solutions indexed by 1 and by 2, and then we make a L2

estimate making the scalar product of the results by v = v1  - v2 and \bfitC = \bfitC 1  - \bfitC 2.
The only difference with the case presented in the subsection 2.3.3 comes from how
to control the difference between the stresses \bfitsigma = \bfitsigma 1  - \bfitsigma 2 from the difference in the
conformations \bfitC .

We recall that

\bfitsigma = \Lambda (t)

\biggl( \surd 
\bfitC 1

tr
\surd 
\bfitC 1

 - 
\surd 
\bfitC 2

tr
\surd 
\bfitC 2

\biggr) 
.
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The desired control is a consequence of the mean value theorem applied to the function

f : \bfitC \in \scrS + \mapsto  - \rightarrow 
\surd 
\bfitC 

tr
\surd 
\bfitC 

\in \scrS +,

the set \scrS + denoting the set of symmetric positive definite matrices. Indeed, using the
inverse function theorem, it's well known that the inverse of \bfitC \in \scrS + \mapsto  - \rightarrow \bfitC 2 \in \scrS +

(that is, the square root matrix function) is of class \scrC 1. The function f is also of class
\scrC 1, and the mean value theorem reads

| \bfitsigma | = | \Lambda (t)| | f(\bfitC 1) - f(\bfitC 2)| \leq sup
(0,T )

| \Lambda | M | \bfitC 1  - \bfitC 2| \lesssim | \bfitC | ,

where M is a bound on df on any compact set of \scrS + containing \bfitC 1 and \bfitC 2.
Local existence. The proof follows the same steps that in the proof of the local ex-

istence for the PEC-type model (see the subsection 2.3.3). We rewrite the system (36)
as a fixed point equation\left\{               

\partial tv + v \cdot \nabla v  - \Delta v +\nabla p = div\bfitsigma ,

div v = 0,

\bfitsigma = \Lambda (t)

\surd 
\bfitC 

tr
\surd 
\bfitC 

,

\partial t\bfitC + v \cdot \nabla \bfitC  - \bfitC \cdot \nabla v  - (\nabla v)\dagger \cdot \bfitC = 0

and apply Schauder's theorem to the application (v,\bfitC ) \mapsto  - \rightarrow (v,\bfitC ) exactly like in
subsection 2.3.3.

Global existence. The strategy to show the result of global existence in time---
Theorem 3.3---follows the same principles as that of Proposition 2.3. The L\infty -estimate
on the stress \bfitsigma is a consequence of the estimate on the trace tr\bfitsigma (the trace controls
the L\infty -norm for any symmetric positive definite matrix; see the proof of Lemma 2.7):

| \bfitsigma (t, x)| \leq tr\bfitsigma (t, x) = \Lambda (t) \leq sup
(0,T )

| \Lambda | .

Lemma 2.8 is again used to control the velocity from the stress.
To conclude the proof, it is enough to know how to control y(t) = \| \nabla \bfitsigma \| Lr(0,t;Lq)

for 0 \leq t \leq T \star . In practice, we have no equation on \bfitsigma but only one coupling \bfitsigma 2 and \bfitsigma 
(see (37) in Lemma 3.4). We then first get an estimate on w(t) = \| \nabla (\bfitsigma 2)\| Lr(0,t;Lq).
We have

\bigtriangledown 
(\bfitsigma 2) - 2\Lambda \prime 

\Lambda 
\bfitsigma 2 +

2

\Lambda 
(Dv : \bfitsigma )\bfitsigma 2 = 0.(43)

We first take gradients in (43) and compute the L2 scalar product of the resulting
equation with q| \nabla (\bfitsigma 2)| q - 2\nabla (\bfitsigma 2). Using the H\"older inequality and the fact that
| \bfitsigma (t, \cdot )| L\infty \lesssim 1, we deduce

dt\| \nabla (\bfitsigma 2)\| qLq \lesssim 

(1 + \| \nabla v\| L\infty )\| \nabla (\bfitsigma 2)\| qLq + \| \nabla 2v\| Lq\| \nabla (\bfitsigma 2)\| q - 1
Lq + \| \nabla v\| L\infty \| \nabla \bfitsigma \| Lq\| \nabla (\bfitsigma 2)\| q - 1

Lq .

(44)

Since \bfitsigma is positive definite on a compact set [0, T \star ]\times \BbbT d, Lemma 3.5 implies

\| \nabla \bfitsigma \| Lq \lesssim \| \nabla (\bfitsigma 2)\| Lq .(45)
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The estimate (44) becomes

dt\| \nabla (\bfitsigma 2)\| qLq \lesssim (1 + \| \nabla v\| L\infty )\| \nabla (\bfitsigma 2)\| qLq + \| \nabla 2v\| Lq\| \nabla (\bfitsigma 2)\| q - 1
Lq .(46)

The end of the proof is similar to the proof of the PEC case: the function w(t) =
\| \nabla (\bfitsigma 2)\| Lr(0,t;Lq) satisfies

w\prime (t) \lesssim w(t) ln(e + w(t)) + w(t).

It is bounded by a double exponential function of kind ee
t

. In virtue of (45), which
we can also write y \lesssim w, we deduce that y is bounded too; that concludes the proof.

3.3. The pom-pom polymer model with constant backbone stretch.
The pom-pom model, introduced by McLeish and Larson [50] in 1998, was a break-
through in the field of viscoelastic constitutive equations. The model is developed,
mainly, for long-chain branched polymers. The multiple branched molecule can be
broken down into several individual modes. Each mode is represented by a backbone
between two branch points, with a number of dangling arms on every end. The back-
bone is confined by a tube formed by other backbones; for details refer to [50]. In
the case where the backbone stretch, denoted by \Lambda , is assumed to be constant (or is
assumed to be known as a given function depending on time, \Lambda (t)), the constitutive
equation reads

\bfitsigma = \Lambda (t)
\bfitC 

tr\bfitC 
, where

\bigtriangledown 
\bfitC + (\bfitC  - 1

d
\bfitdelta ) = 0.

This model resembles the MGI model studied in subsection 3.2 with two differences:
1. The present model does not involve the square root of \bfitC .
2. The evolution of the tensor \bfitC seems a little bit more complicated.

The first point simplifies the study since we do not need to control
\surd 
\bfitC from \bfitC (that

corresponds to Lemma 3.5). We also make sure that the second point does not disturb
the proofs of subsection 3.2. In particular, we use the first part of the Lemma 2.6 in
order to verify that \bfitC still remains symmetric positive definite.

Remark 3.4. The original differential form by McLeish and Larson (as for the
complete MGI model) produces a differential equation implementing the evolution of
the backbone stretch \Lambda :\left\{           

\bfitsigma = \Lambda 2 \bfitC 

tr\bfitC 
,

\bigtriangledown 
\bfitC + (\bfitC  - 1

d
\bfitdelta ) = 0,

dt\Lambda = \Lambda (Dv : \bfitC ) - (\Lambda  - 1) strictly for \Lambda < q.

But the presence of the equation on \Lambda produces mathematical difficulties: it seems
difficult to have L\infty -estimates on \Lambda , despite condition \Lambda < q, which does not seem
entirely compatible with \Lambda 's evolution equation. Moreover, this lack of control is no-
ticeable in numerical simulations. For instance, on page 280 of [67], it is written:

In the complex flow simulations, we also observed an unphysical behaviour
for the pom-pom stretch parameter that cannot be observed in steady and
start-up rheometrical flows. Indeed, at high Weissenberg number, the
stretch may become smaller than unity when Dv : \bfitC becomes negative,
which is physically unrealistic. This happens in flow regions where the
velocity gradient changes sign as, for example down-stream of a contrac-
tion/expansion.
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To avoid regularity issues when \Lambda reaches q, Renardy [58, page 97] regularized
the equation for \Lambda as

dt\Lambda =
q  - \Lambda 

q  - \Lambda + \varepsilon 

\Bigl[ 
\Lambda (Dv : \bfitC ) - (\Lambda  - 1)

\Bigr] 
with \varepsilon > 0 so that \Lambda < q, and using a similar method as for the MGI model, we can
prove that \bfitsigma remains bounded. Since then, several authors have proposed relatively
complex modifications; see for instance [65]. It would certainly be interesting to try
to analyze these models from a mathematical point of view.

3.4. Example of a ``bad"" model. Several models take similar forms to those
studied in this article. This is, for example, the case of the nonstretching form of the
rolie-poly model which is written (see, for instance, [60]):\left\{   

\bfitsigma = G\bfitC ,

\bigtriangledown 
\bfitC +

2

3
(Dv : \bfitC )(\bfitC + \mu (\bfitC  - \bfitdelta )) + \varepsilon (\bfitC  - \bfitdelta ) = 0.

(47)

Remark 3.5. We can notice that the solution of the model (47) satisfies
tr (\bfitC  - \bfitdelta ) = 0 if this relationship is true initially. However, this is not fine enough to
apply the results proved in the present article since the trace control does not allow
a bound on the tensor (especially if it is not defined positive!).

Unfortunately, and unlike the other models presented in the present paper, it is
not clear that the tensor \bfitC , satisfying (47), always remains positive. More precisely,
the proof presented by Hulsen in [31] gives a sufficient condition for the solution \bfitC of

\bigtriangledown 
\bfitC = g1(\bfitC ,\nabla v) \bfitdelta + g2(\bfitC ,\nabla v)\bfitC + g3(\bfitC ,\nabla v)\bfitC 2(48)

to remain positive definite if the initial value \bfitC init is positive definite. In particular,
the proof strongly uses the assumption g1 > 0. We can see that the result holds if
g1 \equiv 0, but it is possible to build a counterexample in the case where we have no
information on the sign of g1; that is the case for model (47), the value of g1 being
given by g1(\bfitC ,\nabla v) = \varepsilon + 2

3\mu Dv : \bfitC .

Example 3.1. Consider the velocity field v(x, y) = (x, - y) and the solution \bfitC to
the following equation:

\bigtriangledown 
\bfitC = (Dv : \bfitC )(\bfitdelta  - \bfitC ),(49)

corresponding to (48) with g1(\bfitC ,\nabla v) = Dv : \bfitC , g2(\bfitC ,\nabla v) =  - Dv : \bfitC and g3 = 0.
We assume that the initial condition is given by

\bfitC init =

\biggl( 
a0 0
0 b0

\biggr) 
, a0 > 0, b0 > 0,

so that we can look for a solution \bfitC as a diagonal matrix:

\bfitC (t, x, y) =

\biggl( 
a(t) 0
0 b(t)

\biggr) 
.

The functions a and b satisfy\Biggl\{ 
a\prime  - 2a = 2(a - b)(1 - a),

b\prime + 2b = 2(a - b)(1 - b).



GLOBAL SOLUTIONS FOR VISCOELASTIC MODELS 2943

We look for a0 > 0, b0 > 0 such that a(t) < 0 for t large enough. Introducing \alpha = a+b
and \beta = a - b, we obtain the following equivalent system:\Biggl\{ 

\alpha \prime  - 2\beta = 2\beta (2 - \alpha ),

\beta \prime  - 2\alpha =  - 2\beta 2.

In terms of (\alpha , \beta ), we look for initial condition (\alpha 0, \beta 0) with  - \alpha 0 < \beta 0 < \alpha 0 and such
that \beta (t) <  - \alpha (t) for t large enough. Remark that if \alpha 0 = 3, then \alpha (t) = 3, and in
this case, \beta satisfies

\beta \prime + 2\beta 2 = 6.(50)

We finally look for \beta 0 with  - 3 < \beta 0 < 3 such that the solution of (50) satisfies
\beta (t) <  - 3 for t large enough. Equation (50) is a Riccati equation whose solution is
expressed as

\beta (t) =
\surd 
3 - 2

\surd 
3

1 +
\bigl( \surd 

3+\beta 0\surd 
3 - \beta 0

\bigr) 
e4

\surd 
3t
.

If \beta 0 <  - 
\surd 
3, then the function \beta decreases and goes to  - \infty in finite time: for t large

enough, we have \beta (t) <  - 3.
As an example, we take \alpha 0 = 3, \beta 0 = 1

2 ( - 3  - 
\surd 
3). In terms of initial values

(a0, b0), we have a0 = 1
2 (\alpha 0 + \beta 0) = 3 - 

\surd 
3

4 and b0 = 1
2 (\alpha 0  - \beta 0) = 9+

\surd 
3

4 . We
compute the time t1 for which \beta (t1) =  - 3 (that corresponds to the time where
a(t1) = \alpha (t1) + \beta (t1) = 0):

t1 =
1

8
\surd 
3
ln 3.

As a consequence, if the initial condition is in the form (which is a positive definite
matrix)

\bfitC init =
1

4

\biggl( 
3 - 

\surd 
3 0

0 9 +
\surd 
3

\biggr) 
,

then the solution \bfitC of (49) becomes non positive for time t > 1
8
\surd 
3
ln 3.

From a physical point of view, to quote Leonov and Prokunin [42, section 3.3.5,
page 68]: ``if in any point of the medium a principal value of \bfitC is negative, the
Hadamard instability will immediately happen. Moreover, in this case, we cannot
also satisfy the restrictions imposed by the Second Law.""

In fact, such a behavior was numerically detected in [66, page 305]: ``Physically,
tr\bfitsigma can not become smaller than 0. However, numerically we have encountered these
unrealistic values at the front and back stagnation points in the flow around a cylinder
at sufficiently high Weissenberg numbers.""

4. Conclusion: How do you know if a rheological model is good? In
conclusion, the results proved in this paper show that adding nonlinear contributions
can generate fundamental and interesting mathematical properties. These types of
results are well known when diffuse effects on stress are added; see for instance the
works of Barrett and S\"uli [1, 2, 3, 4]. Here we show that there are other ways to
``regularize"" that are hidden in relatively recent and relevant models: the partially
extensible nature of the polymer strands for the PEC model, the chain stretch effects
in convective constraint release theories for entangled polymers in the MGI model,
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etc. The results of this article therefore affirm that adding such terms is not only
essential to capture observed phenomena but also fundamental to show theoretical
results: the two aspects naturally complement each other.

Another interesting point of view is that of the numerical aspect: the numerical
can be viewed as a bridge between the two aspects (experimental and theoretical)
discussed in this conclusion. A mathematical model will be relevant if solutions can
be calculated (at least approximately) and if these solutions are close to what is
observed. But before calculating a solution numerically, it is essential to know if
this solution exists and if it is unique: that is, if the model is mathematically well
posed. More precisely, in this article we add to the notion of well-posed character
in Hadamard's sense, the notion of the lifetime of the solution (because problems
are evolutionary). We thus show that physically relevant problems for viscoelastic
flow models are well posed in long time. These types of issues (globality in time of
solutions) are generally not solved in similar frameworks, which generates numerical
problems for evaluating solutions. As example, the famous high Weissenberg number
problem (HWNP) is intimately linked to the lack of knowledge on the theoretical
structure of the Oldroyd linear model. Many authors published articles in the 1980s
that explored the HWNP: Debbaut and Crochet in [17], Keunings in [33, 34], and
Davies in [16]. See also more recently the works [8, 19] without any real success.
At the same time, many theoretical studies (see [10, 21, 26, 43], but there are many
others) are interested in the problems of global existence for the Oldroyd model, still
without success!

Finally, the natural question is the following: can we validate a model as soon
as we know that it is mathematically well posed? The results presented here tend to
say that PEC and MGI models are mathematically relevant, and it would therefore
be possible to calculate numerical solutions even in long time---with some validity.

The key to success in the models presented lies mainly on the natural bound that
exists on stress. Roughly speaking, we show that if we have sufficient bounds on
stress, then the underlying models will be well posed. It is also important to note
that for the study introduced here, these bounds are strongly related to a positive-
ness property (which is also physically important). The results of the present article
provide answers on some models, but there are still many questions:

\bullet On the one hand, for some other models, the question of global existence
remains open because we do not know how to obtain sufficient bounds on stress. This
is the case with the Oldroyd model, although it is known that the associated stress
is positive definite; see [39] (the positiveness is a consequence of the Kramers expres-
sion for the stress tensor using a micro-macro model). Beale--Kato--Majda criteria
of explosion are known for viscoelastic models (see [30, 40]), but no result makes it
possible to affirm if these criteria are or are not satisfied.

\bullet On the other hand, it seems clear that we can invalidate some models as
soon as we have that they are not mathematically well posed. This is the subject of
subsection 3.4, which highlights some models for which the conformation tensor does
not remain positive over time. The theoretical analysis proposed in this article can
therefore no longer be applied, and the underlying physics therefore seems to be in
serious trouble!

Appendix: Notations. In this appendix, we describe the notations used in the
article. First, the notations on the tensor analysis are recalled (contracted products
and norms). Then, we specify the notations used for the temporal derivatives (partial,
total, convected, etc.). Finally, the functional spaces used in the article are introduced.
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First note that throughout the article, we use the symbol x \lesssim y which means that
there exists a constant C such that x \leq Cy. Obviously, according to the context, the
constant C does not depend on the main variable of the studied problem.

Tensorial tools.

\checkmark For a 2-tensor \bfitA , we denote by ``tr\bfitA "" and by ``det\bfitA "" its trace and its deter-
minant, respectively. The bold symbol \bfitdelta corresponds to the identity 2-tensor whose
components satisfies \bfitdelta ij = 1 if i = j and \bfitdelta ij = 0 if not.

\checkmark For an N -tensor, N \geq 2, we denote by \bfitA \dagger the generalization of the transpose
operation. It is defined by inverting the two first indices:

\bfitA \dagger 
ij\bfk = \bfitA ji\bfk .

In the previous expression, as in the following, the bold index notation k denotes a
multi-index. Above we have k = k1, k2, . . . , kN - 2. As usual, we also introduce some
contractions of a pair of tensors. The 1-contraction between an N -tensor \bfitA and an
M -tensor \bfitB with N \geq 1, M \geq 1 is the (N + M  - 2)-tensor defined by (using the
Einstein summation convention):

(\bfitA \cdot \bfitB )\bfi \bfj = \bfitA \bfi m\bfitB m\bfj .

In the same way, the 2-contraction between two tensors of order larger than 2 reads

(\bfitA : \bfitB )\bfi \bfj = \bfitA \bfi mn\bfitB mn\bfj .

More generally, we can perform the N -contraction
(N)
: of any pair of tensors of order

larger than N . For instance, we will use the 3-contraction defined as follows:

(\bfitA 
(3)
: \bfitB )\bfi \bfj = \bfitA \bfi mn\ell \bfitB mn\ell \bfj .

\checkmark Finally, the Frobenius norm of an N -tensor \bfitA will always denoted by | \cdot | ,
regardless of the size of N . It is defined by

| \bfitA | 2 = \bfitA 
(N)
: \bfitA .

On several occasions, we will use the fact that when a 2-tensor \bfitA is symmetrical
and positive definite, then its norm is equivalent to its trace:

| \bfitA | \leq tr\bfitA \leq 
\surd 
d | \bfitA | .(51)

The proof may be inferred from the orthogonal decomposition of symmetric positive
definite 2-tensor.

Time derivative.

\checkmark We denote the material derivative by dt := \partial t + v \cdot \nabla .
\checkmark It is well known that one must be careful when handling tensor equations

because of the principle of frame indifference or material objectivity. The equations
(and thus the time derivative) should not depend on rigid motions of the observer. We
will use the classical upper convected time derivative (UCM) for a 2-tensor function\bfitA :

\bigtriangledown 
\bfitA := dt\bfitA  - \bfitA \cdot \nabla v  - (\nabla v)\dagger \cdot \bfitA .(52)

Although we will only present results with the UCM derivative, except for an ap-
plication to the PTT models in subsection 3.1, the theorems stated here can easily
adapt to any classical frame indifferent derivatives \scrD \xi , \xi \in [ - 1, 1]:
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\scrD \xi \bfitA := dt\bfitA +
1 - \xi 

2
(\bfitA \cdot \nabla v\dagger +\nabla v \cdot \bfitA ) - 1 + \xi 

2
(\bfitA \cdot \nabla v + (\nabla v)\dagger \cdot \bfitA ).(53)

The particular cases \xi =  - 1, \xi = 0, and \xi = 1 correspond respectively to the lower
convected, Jaumann, and upper convected derivative---see Remark 2.3, point 3.

Functional spaces.

\checkmark The results presented in this article are only proved in space periodic do-
mains \BbbT d, d = 2 or d = 3. This constraint is purely technical, and it is certainly
possible that the results may extend to the case of the whole space \BbbR d. Nevertheless,
in the case of a bounded domain study, it must be ensured that all the arguments
could still be adapted.

\checkmark For all real s \geq 0 and all integer q \geq 1, the set W s,q corresponds to the Sobolev
spaces. We classically denote Lq = W 0,q the associated Lebesgue space. Since we
will frequently use functions with values in \BbbR d or in the space \BbbR d\times d of real matrices,
etc., the usual notations will be abbreviated. For instance, the space (W 1,q)d will be
denoted W 1,q. Moreover, all functional norms will be denoted by indices, for instance,
like \| \cdot \| W 1,q .

\checkmark The space Dr
q stands for some fractional domain of the Stokes operator Aq in

Lq (cf. section 2.3 in [15]). Its norm is defined by

\| w\| Dr
q
:= \| w\| Lq +

\biggl( \int +\infty 

0

\| Aqe
 - tAqw\| rLq dt

\biggr) 1/r

.

Roughly, the vector-fields of Dr
q are vectors which have 2  - 2

r derivatives in Lq and
are divergence-free. It may be identified with Besov spaces. It also can be viewed
as an interpolate space between Lq and the domain of the Stokes operator D(Aq);
see [15].

\checkmark The notation of kind Lr(0, T ;W 1,q) denotes the space of r-integrable functions
on (0, T ), with values in the space W 1,q.

\checkmark Finally let us denote P the orthogonal projector in L2 onto the set of the
divergence-free vectors fields of L2. The pressure p is a Lagrange multiplier associated
to the divergence-free constraint. It can be solved using the Riesz transforms. More
precisely, we take the divergence of the first equation of Navier--Stokes equations, and
we use the periodic boundary conditions to have

p =  - ( - \Delta ) - 1div div (\bfitsigma  - v \otimes v).(54)

We will see from Proposition 2.2 or 3.2 that the solutions discussed in this paper
satisfy \bfitsigma  - v \otimes v \in L\infty (0, T ;L2). The pressure is meant to be given by (54).
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