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The Letter deals with two-dimensional symmetric and antisymmetric flows of generalized Newtonian
and Herschel–Bulkley yield stress fluids close to a sharp edge which, for modeling purposes, is taken to
be a geometric singularity. The pressure field is approximated using an asymptotic expansion valid in
the tip neighborhood, and its dependence upon the edge angle is studied. For these special flows, the
methodology used to obtain the pressure behavior does not require explicit knowledge of the viscosity
dependence upon shear rate. Moreover, we prove that whenever the tip angle is such that the edge is
hollow shaped, the yield stress fluid behaves solid-like in a neighborhood domain of the tip.

 2008 Elsevier B.V. All rights reserved.

1. Introduction

Hele–Shaw flows are common to many industrial applications,
e.g. thin film injection molding, flows of relevance to tribology,
etc. Commonly, they refer to flows confined between two paral-
lel plates that are close to each other. The free boundary of the
fluid film may, on the one hand, take any closed shape, and on the
other, encounter obstacles of different geometries (such as sharp
edges) placed perpendicular to the direction of flow. The early
Hele–Shaw studies focused on Newtonian fluids. Moffatt [1] stud-
ied the flow behavior near a sharp corner confined between two
intersecting, fixed plane surfaces and found the presence of ed-
dies only for angles between rigid planes less than a critical value,
and their absence for free surface flows. Hieber and Shen [2] car-
ried out numerical simulations of Hele–Shaw filling flow of a thin
planar cavity by a power law fluid and focused on tracking down
the advancing fluid front. Later, Hassager and Lauridsen [3] focused
on Hele–Shaw flows of a power law fluid around sharp corners,
while Huilgol and Tanner [4] have presented an approximate so-
lution to the problem of a second order fluid leaving a straight
edge. More recently, Aronsson and Janfalk [5] carried out a rigor-
ous mathematical analysis of the pressure behavior of a power law
fluid around a sharp edge. However, for more complex viscosity
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laws—such as Bingham or Herschel–Bulkley fluids—modeling Hele–
Shaw flows requires a different theoretical framework. That this is
indeed the case may be reckoned from Huilgol’s recent work [6],
where the flow equations are obtained by making use of the vis-
cometric fluidity function.

In this Letter we extend the analysis of Hele–Shaw flows around
a sharp edge (the tip of which is assumed a geometric singularity)
and present new results on the pressure dependence vs. edge angle
for the following liquids:

• Generalized Newtonian fluids, in which case the results are ob-
tained without specific reference to the explicit dependence of
the viscosity upon the shear rate γ̇ . This has been achieved
by generalizing the method given in [3] and [5], where only
power law fluids were studied. Furthermore, we address the
Carreau–Yasuda fluid issue as well.

• Yield stress fluids, for which the pressure pattern has never been
studied before.

The Letter is organized as following. Section 2 contains a con-
cise presentation of the general constitutive laws being used (for
sake of clarity). The equations of thin film flow motion, which
result in a simplified boundary value problem whose unique un-
known is the pressure field, are given next. The way they are
obtained is similar to that shown in [3] and [7]. In Section 3, we
study the pressure behavior in a neighborhood of a sharp edge, in
a system of polar coordinates centered at the edge tip. Next we
present several theoretical results of relevance to the pressure be-
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havior, valid for two particular flows: antisymmetric (perpendicular
to the edge axis of symmetry) and symmetric (directed towards
the edge and parallel to its axis of symmetry). In doing so, we as-
sume that the pressure field in the neighborhood of r = 0 is of the
form:

p(r, θ) = rmϕ(θ) + o
(
rm

)
, where m > 0.

The pressure behavior is chiefly governed by the numerical val-
ues of the parameter m. For each category of fluids, we present the
m vs. edge (singularity) angle dependence, and that for the two
types of flows previously described. In particular, it is proved that,
for corner angles for which the edge may be pictured as a hollow
shaped cavity, the portion of the yield stress fluid entrapped in a
region close to the tip—now located at the bottom of the cavity—
does not yield during the flow, i.e. takes on a solid pattern.

2. The constitutive laws and flow equations

2.1. Constitutive laws

The generalized Newtonian fluid constitutive equation (mostly
used for shear flows) is given by [8–10]:

σ = f (γ̇ )A1 (2.1)

where σ is the Cauchy extra-stress tensor, A1 = ∇u + (∇u)T is
the (traceless) first Rivlin–Eriksen tensor, u the velocity field, and
f (γ̇ ) stands for the shear rate dependent viscosity; the shear rate
γ̇ is defined as usually using the second invariant II(A1) of the A1
tensor, that is:

γ̇ 2 = II(A1) := 1
2
tr

(
A2
1
)
.

We now pause to recall several particular forms of the constitutive
law (2.1) that will be studied in this work.

Example 2.1.

(1) For the constant function f (γ̇ ) = µ an ordinary Newtonian
fluid is obtained.

(2) The generalized Newtonian n-power law fluid (with 0 < n < 1
for the shear thinning case) is obtained when:

f (γ̇ ) = µγ̇ n−1, µ,n > 0. (2.2)

(3) The generalized Newtonian fluid with Carreau–Yasuda viscos-
ity law is given by:

f (γ̇ ) = µ∞ + (µ0 − µ∞)
[
1+ (λγ̇ )a

](n−1)/a
,

µ∞,µ0,λ,n,a > 0. (2.3)

(4) The Herschel–Bulkley yield stress (or viscoplastic) fluid: fol-
lowing Huilgol [11], the Cauchy-extra stress tensor reads
(µ,n > 0):

σ =
(
µγ̇ n−1 + σ0

γ̇

)
A1 if II1/2(σ ) > σ0,

A1 = 0 if II1/2(σ ) ! σ0,

where σ0 is the yield stress value (which depends on a given
material microstructure), and II(σ ) is the second invariant of
the Cauchy extra-stress tensor, which for a shear flow of an
incompressible fluid (i.e. trσ = 0) is given by:

II(σ ) := 1
2
tr

(
σ 2).

Fig. 1. The three-dimensional flow domain geometry (for details see text).

The particular case when n = 1 is known as the Bingham fluid.
Another way to present the yield stress fluid is to make ex-
plicit f (γ̇ ) (as in [8,12] or [13]):

f (γ̇ ) =
{

µγ̇ n−1 + σ0
γ̇ if γ̇ %= 0,

solid behavior if γ̇ = 0.
(2.4)

As an aside, we point out that a thorough, rigorous mathemat-
ical presentation of general viscoplastic fluids is given in [14].

2.2. The thin film flow governing equations

The general form (i.e. for any three-dimensional domain—see
Fig. 1) of the momentum balance equation and the incompressibil-
ity condition, are given respectively by:

ρ

(
∂u
∂t

+ u · ∇u
)

= −∇p + divσ , (2.5)

divu = 0, (2.6)

where ρ is the (here constant) fluid density.
For the Hele–Shaw flows of interest to the present work (i.e.

those confined between two narrowly gapped parallel plane sur-
faces), the fluid film thickness is negligible compared to the do-
main x − y other dimensions. When this assumption is taken into
account, a simplified form (more rigorously, an approximation) of
Eqs. (2.5) and (2.6) is obtained.

Let the velocity field be u = (u, v, w), with its components
functions of Cartesian coordinates (x, y, z), and let the gap be-
tween the horizontal x0y plane and any of the two boundary
planes be denoted |z| = H/2. As the flow is chiefly confined to
the x and y directions, it is usually assumed (e.g. [3] and [5]) that
w is negligible compared to u and v . Therefore, making use of the
later assumption into Eqs. (2.5) and (2.6), one finds:

∂p
∂x

= ∂

∂z

[
f (γ̇ )

∂u
∂z

]
,

∂p
∂ y

= ∂

∂z

[
f (γ̇ )

∂v
∂z

]
,

∂p
∂z

= 0, (2.7)

∂u
∂x

+ ∂v
∂ y

+ ∂w
∂z

= 0, (2.8)

where:

γ̇ =
√(

∂u
∂z

)2

+
(

∂v
∂z

)2

. (2.9)

Remark 2.1. Eqs. (2.7) were obtained from Eqs. (2.5) above in a
way similar to that described in [3], which is partially a heuristic
one. In some recent papers [15–19] dealing with thin film flows of
generalized Newtonian fluids, detailed proofs of their validity are
given. They are based on the proof given by Bayada and Chambat
in [20], for a common Newtonian fluid.



Author's personal copy

6406 L. Chupin, L.I. Palade / Physics Letters A 372 (2008) 6404–6411

Regarding the boundary conditions, the no wall slip requires:

u = 0 for z = ± H
2

. (2.10)

Given the flow domain symmetry, in the following we shall focus
only on the upper half subdomain, i.e. the one for which z = H/2,
and search for solutions restricted to z ∈ [0, H/2] that satisfy:

∂u
∂z

= ∂v
∂z

= 0 and w = 0 for z = 0. (2.11)

Remark 2.2. The equations (and the related considerations) pre-
sented so far hold true for domains with variable height also, i.e.
those for which H = H(x, y), and that without conflicting with the
boundary conditions (2.11); as an example, we mention the flow
domains for which z = 0 is a symmetry plane.

In the next section, we follow the procedure described in [3]
which allows to eliminate the velocity field components from the
momentum balance equation (2.7), and leads to a boundary value
problem whose unique unknown is the pressure field.

2.3. The pressure equation

To achieve the forementioned goal, the first two equations of
(2.7) are integrated with respect to z using the boundary condi-
tions (2.11) to get:

z
∂p
∂x

= f (γ̇ )
∂u
∂z

and z
∂p
∂ y

= f (γ̇ )
∂v
∂z

. (2.12)

Next, squaring each equation in (2.12) and summing up side by
side the results, give:

zX = f (γ̇ )γ̇ where X =
√(

∂p
∂x

)2

+
(

∂p
∂ y

)2

. (2.13)

Let us assume there exists a function G such that:

f (γ̇ )γ̇ = zX ⇐⇒ γ̇ = G(zX). (2.14)

Remark 2.3. This assumption is tantamount to saying the equation
γ̇ f (γ̇ ) = zX is explicitly solvable in terms of γ̇ , which of course
triggers restrictions on the f (γ̇ ) algebraic form. In this work we
shall first focus on particular cases where Eq. (2.14) does have an
explicit solution γ̇ = G(zX) and exemplify using well-known vis-
cosity relationships. However, situations where an explicit solution
is not obtainable are not ruled out. In fact, it will be proved that,
insofar as the pressure field map around the edge is the main con-
cern, what matters mostly (and influences it) is the fluid asymp-
totic behavior for low (γ̇ → 0) and high (γ̇ → +∞) shear rates;
see Section 3.3 for details.

Example 2.2. For the Herschel–Bulkley fluid, G(zX) is taken as a
particular case of Eq. (2.14), i.e.:

G(zX) =
{

( zX−σ0
µ )1/n if zX > σ0,

0 if zX ! σ0.
(2.15)

Eq. (2.15) above takes into account the fact that the yield stress
fluid moves as a solid for zX ! σ0.

Next, making use of Eqs. (2.12) and (2.13) and the definition
of G (see Eq. (2.14) above), we obtain:

∂u
∂z

= G(zX)

X
∂p
∂x

and
∂v
∂z

= G(zX)

X
∂p
∂ y

. (2.16)

Using the method described in [21], we proceed as following:
Eqs. (2.16) right above are twice integrated, and after use of bound-
ary conditions Eq. (2.10) is made, one gets:

u(x, y, z) =
z∫

H/2

∂u
∂z

(x, y, t)dt = 1
X

( z∫

H/2

G(t X)dt

)
∂p
∂x

, (2.17)

v(x, y, z) =
z∫

H/2

∂v
∂z

(x, y, t)dt = 1
X

( z∫

H/2

G(t X)dt

)
∂p
∂ y

. (2.18)

Consequently, the flow fluxes qu and qv can now be written as:

qu(x, y) = 2

H/2∫

0

u(x, y, z)dz = 2
X

( H/2∫

0

zG(zX)dz

)
∂p
∂x

, (2.19)

qv(x, y) = 2

H/2∫

0

v(x, y, z)dz = 2
X

( H/2∫

0

zG(zX)dz

)
∂p
∂ y

. (2.20)

Finally, using the incompressibility restriction Eq. (2.7) together
with the boundary conditions Eqs. (2.10) and (2.11), we find that:

∂qu
∂x

+ ∂qv

∂ y
= 0. (2.21)

Eq. (2.21) can be rewritten in operator form as div(g(X)∇p) = 0,
or, more conveniently for further calculations, as:

∂

∂x

[
g(X)

∂p
∂x

]
+ ∂

∂ y

[
g(X)

∂p
∂ y

]
= 0 with

X =
√(

∂p
∂x

)2

+
(

∂p
∂ y

)2

(2.22)

where the function g is:

g(X) = 2
X

( H/2∫

0

zG(zX)dz

)

. (2.23)

Remark 2.4. For sake of clarity we now pause to exemplify how
the above presented formalism applies to a Newtonian fluid, i.e.
for which f (γ̇ ) = µ. In this case, G(zX) = zX/µ (see Eq. (2.14)).
Therefore, g(X) = H3/12µ (see Eq. (2.23)) and Eq. (2.22) becomes
the well-known Reynolds equation:

div
(

H3

12µ
∇p

)
= 0.

2.4. Remarks on antisymmetric half plane solution

In this section we explore the behavior of nontrivial antisym-
metric solutions p(x, y) to Eq. (2.22) defined over the half plane
{(x, y) ∈ R2, x > 0} (see Fig. 2) such that p(x,0) = 0; full solution
details are given in the next section.

Assume one searches for a solution p independent of the vari-
able x while solving:
[
g
(∣∣p′(y)

∣∣)p′(y)
]′ = 0 for y ∈ R,

p(0) = 0.

Whenever the mapping X +→ Xg(X) is strictly monotonic (either
increasing or decreasing), there exists a unique nonzero solution
(up to an integration constant which can be calculated by setting
p′(0) = 1 for example). Such a solution is given by:

p(x, y) = y.
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Fig. 2. The half-plane domain (for details see text).

It will next be readily perceived that Newtonian, power law
and Carreau–Yasuda fluids are compatible with the forementioned
strict monotonicity restriction. However, the yield stress fluid case
is different: the mapping x +→ xg(x) vanishes for x ! σ0 and is
monotonic for x > σ0, where σ0 denotes the yield stress value. Ac-
tually one gets:

solid-like behavior if p′(0) ! σ0,

p(x, y) = p′(0)y if p′(0) > σ0.

The yield stress fluid case is studied in Section 3.4.

3. Corner edge solution

Let us now search for solutions to Eq. (2.22) that are valid in
the region neighboring the edge (singularity) peak. The tip angle is
assumed fixed in time and equal to 2α (see Fig. 3).

To do so, Eq. (2.22) is expressed in polar coordinates (r, θ), the
axes of which are centered at the forementioned singularity:

∂

∂r

[
rg(X)

∂p
∂r

]
+ 1

r
∂

∂θ

[
g(X)

∂p
∂θ

]
= 0, (3.1)

for (r, θ) ∈ R∗
+ × ]−α,α[, where α ∈ ]0,π [ and

X =
√(

∂p
∂r

)2

+ 1
r2

(
∂p
∂θ

)2

. (3.2)

3.1. Pressure behavior close to the geometric singularity

We now turn our attention to finding particular solutions to
Eq. (2.22). To achieve this, we assume for the pressure field an
asymptotic expansion representation of the form:

p(r, θ) = rmϕ(θ) + o
(
rm

)
, m > 0. (3.3)

Searching for this type of solutions while dealing with stress be-
havior near geometric singularities is not unusual. In passing, we
mention that Moffatt [1], and later on Hassager and Lauridsen [3],
have also searched for the same type of solution in their quest
to solve flow problems around sharp edges. Moreover, the stress
behavior close to sharp crystal edges in polycrystalline materials
under large deformations is also modelled using an asymptotic ex-
pansion of the same type as the one used here: see for example
the recent work by Picu and Gupta [22,23].

When Eq. (3.3) is introduced into Eq. (3.2), after retaining only
the dominant term, leads to:

X = rm−1
√
m2ϕ(θ)2 + ϕ′(θ)2. (3.4)

(a) (b)

(c) (d)

Fig. 3. The flows under scrutiny take place in a region close to the edge tip. The
arrows on the first two drawings show the direction of antisymmetric flows, while
on the last two they indicate the direction of symmetric flows. Sketches (b) and (d)
correspond to the case where the edge angle value is chosen so that the sharp edge
becomes a hollow shaped cavity.

Next, making use of the dominant (i.e. of the mth-rank) term in
the expansion Eq. (3.3) into Eq. (3.1) gives:

∂

∂θ

[
g(X)

∂ϕ

∂θ

]
+m

[
mg(X) + (m − 1)Xg′(X)

]
ϕ = 0. (3.5)

The above equation will be solved for ϕ with respect to two types
of boundary conditions, each of which being related to a particu-
lar flow. For the antisymmetric flows (see Figs. 3(a) and 3(b)), the
boundary conditions are (see also [3]):

ϕ′(α) = 0 and ϕ(0) = 0, for antisymmetric flow. (3.6)

For symmetric flows (see Figs. 3(c) and 3(d)) the boundary condi-
tions look:

ϕ′(α) = 0 and ϕ′(0) = 0, for symmetric flow. (3.7)

The problem with antisymmetric boundary conditions will be ad-
dressed first (in the next section), followed by that with symmetric
boundary conditions (in Section 3.5).

3.2. Newtonian and power-law fluids

3.2.1. Newtonian fluid case
For a Newtonian fluid, f (γ̇ ) = µ (see in Example 2.1). The func-

tions G and g are obtained explicitly using Eqs. (2.14) and (2.23)
(as mentioned in Remark 2.4). Therefore, in this case g(X) =
H3/(12µ) is the constant function, and the particular form of
the pressure differential equation Eq. (3.5) and the antisymmetric
boundary conditions Eq. (3.6) read:

ϕ′′ +m2ϕ = 0, ϕ(0) = 0 and ϕ′(α) = 0.

In the above, m2 is the first nonzero eigenvalue of the Laplacian
solved with respect to the boundary conditions Eq. (3.6). Moreover,
(see also Fig. 6 in Section 3.3):

m = π

2α
,

eigenvalue to which corresponds the eigenfunction ϕ(θ) =
sin[πθ/(2α)].



Author's personal copy

6408 L. Chupin, L.I. Palade / Physics Letters A 372 (2008) 6404–6411

3.2.2. Power-law fluid case
For generalized n-power Newtonian fluids (see Eq. (2.2)), carry-

ing out calculations in a way similar to the one given right above
leads to:

f (γ̇ ) = µγ̇ n−1

which, using Eq. (2.14), gives further:

G(zX) =
(
zX
µ

)1/n

. (3.8)

From above we obtain for the function g (defined in Eq. (2.23)) the
following expression:

g(X) = 2
X

H/2∫

0

zG(zX)dz

= 2X1/n−1

µ1/n

H/2∫

0

z1/n+1 dz

= H1/n+2

µ1/n(1/n + 2)21/n+1 X1/n−1.

Therefore g(X) = const X1/n−1.
We are now in a position that enables us to relate our results to

those of Aronsson and Janfalk. Indeed, Theorem 3.1.6 in [5, p. 353],
states that, for power-law fluids for which g(X) = const X1/n−1 and
for any angle α ∈ ]0,π [, α %= π/2, there exists (up to a multiplica-
tive constant) a unique function ϕ and a real number m > 0 which
is a solution of Eq. (3.5) and of Eq. (3.6); moreover ϕ′ > 0 on
]−α,α[. The pressure field can now be computed by solving the
following boundary value problem (which is a particular case of
Eq. (3.5)):
{

ϕ′′ +m2ϕ + ( 1n − 1)m(m − 1) ϕ′2+m2ϕ2

(1/n)ϕ′2+m2ϕ2 ϕ = 0,

ϕ′(α) = 0, and ϕ(0) = 0.
(3.9)

Eq. (3.9) is solved numerically using a fast convergent algorithm
based on the “shooting” technique. The solution is denoted:

ϕ = Φα(θ). (3.10)

The numerical values of m computed here are identical to those
reported in [3]. Next, on Fig. 4 we show the shape of succes-
sive iterations that converge towards the final solution Φα(θ). As
p(r, θ) = rmϕ(θ) has now been obtained, for convenience (and
sake of clarity) it may be next expressed in Cartesian coordinates
also centered at the edge tip. This is done on Fig. 5, where p(x, y)
is plotted for n = 0.1, α = 3π/4, chosen arbitrarily to exemplify.

Moreover, Theorem 3.2.4 in [5, p. 359], gives m explicitly; with
this work notations, the result is:

m = β(α) + n − 1
β(α) − 1

:= Mα, (3.11)

where:

β(α) = 1
2

(
1− n ±

√
(n − 1)2 + 4δ2n

)
and

δ = π

|π − 2α| . (3.12)

Remark 3.1. This work power m given in Eq. (3.11), and function
β presented in Eq. (3.12) right above, do correspond to l and β1
given in Eq. (4.4) in [5, p. 362].

In the above equation that defines β , the sign is set equal to +
if 2α < π and equal to − if 2α > π . The relationship m vs. edge
angle α is plotted in Fig. 6 (with n = 0.5 chosen as an example).

Fig. 4. Successive numerical iterations that converge towards the solution ϕ = Φα(θ)

of Eq. (3.9).

Fig. 5. The pressure field p = p(x, y) in Cartesian coordinates, solution of the power-
law antisymmetric flow boundary value problem. Here n = 0.1 and α = 3π/4 were
chosen arbitrarily to exemplify.

Next we recall here that for 2α = π one gets the half plane
domain case that was studied in Section 2.4 above; there it
was found that the pressure field has the form p(x, y) = y in
Cartesians, that is p(r, θ) = r1 sin θ in polar coordinates, and that
Mπ/2 = 1.

Eventually one has:

Proposition 3.1. Let an n-power fluid antisymmetric flow take place in
a sharp edge neighborhood of angle α ∈ ]0,π [. Then the pressure field
may be expressed as p(r, θ) = rmϕ(θ), where

m = Mα, see Eq. (3.11),

ϕ = Φα, see Eq. (3.10).

Remark 3.2. Note that the case 2α = π is recovered when the
monotonicity of m vs. α relationship is used. Indeed, given that
in Theorem 3.1.6 in [5] it is shown that m is a decreasing function
of α, it follows that:

α < π/2 -⇒ Mα > 1,

α > π/2 -⇒ Mα < 1. (3.13)

Remark 3.3. As the reason behind the fact that ϕ′ > 0 may not be
readily perceived at a first glance, the present remark is devoted
to shed more light on it. If it is not required that ϕ′ > 0, then
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Fig. 6. The exponent m vs. edge angle α dependence for a Newtonian fluid (thin
curve), power law fluid (thick curve), and Carreau–Yasuda fluid (open symbols); for
the last two fluids we set n = 0.5 to exemplify.

the solution to the boundary value problem given in Eqs. (3.5)–
(3.6) is not unique. Indeed, if ϕ′ vanishes for any α̃ ∈ ]−α,α[,
then one may construct other solutions defined over any subin-
tervals ]−α, α̃[ and ]α̃,α[ with nonzero first order derivatives. In
the later case, since the m = m(α) function is decreasing, the val-
ues of m obtained for such a solution exceed those obtained for
(edge angle) α. Therefore, only the least m > 0 value leads to the
solution ϕ which is such that ϕ′ > 0. Moreover, if ϕ′ = 0, then
compliance with antisymmetric flow boundary condition ϕ(0) = 0
results in the solution ϕ = 0, which is of no physical interest.

3.3. The Carreau–Yasuda fluid case

3.3.1. Generalities
As the flows around sharp edges of more complex generalized

Newtonian fluids such as the Carreau–Yasuda ones have not previ-
ously been studied, this part of the Letter is devoted to it.

On the one hand, note that viscosity functions f (γ̇ ) more com-
plex than the power law one will exhibit different asymptotic
behaviors for low and high shear rates γ̇ . Formally, let f (γ̇ ) be
asymptotically equivalent to γ̇ a0 (γ̇ a∞ ) for small (large) γ̇ val-
ues. This implies that the corresponding function g (defined in
Eq. (2.23)) behaves asymptotically as:

g(X) ∼
X→0

C0Xb0 ,

g(X) ∼
X→∞

C∞Xb∞ .

On the other hand, of interest here is the function X(r, θ) behav-
ior close to the singularity tip (i.e. whenever r shrinks down to 0),
behavior on which depends that of g(X). The forementioned pat-
tern is strongly influenced by the m values. Indeed, if m > 1, then
limr→0 X(r, θ) = 0, where X(r, θ) is given in Eq. (3.4). In this case:

g
(
X(r, θ)

)
∼

r→0
C0

[
X(r, θ)

]b0

and the pressure Eq. (3.5) is to be solved for Xb0 . If m < 1, then
limr→0 X(r, θ) = +∞, g behaves asymptotically as:

g
(
X(r, θ)

)
∼

r→∞C∞
[
X(r, θ)

]b∞

and the pressure equation is to be solved for Xb∞ . Finally, the
case m = 1 corresponds to angle values α = π/2 (as seen in Sec-
tion 2.4).

One particular difficulty consists in that one does not know
beforehand the values of m, i.e. whether m " 1. Nevertheless, in
the upcoming sections, we shall rigorously prove for the Carreau–
Yasuda fluid and for the yield stress Herschel–Bulkley one that it is
possible, first, to calculate the values of m, and second, evaluate ϕ .

3.3.2. Application to the Carreau–Yasuda fluid model
For a Carreau–Yasuda viscosity law (see Eq. (2.3)) one has:

f (γ̇ ) ∼ µ0 at 0,

f (γ̇ ) ∼ C γ̇ n−1 at +∞.

This is a particular case of the one addressed in the previous
section, as to b0 = 0 corresponds the Newtonian case (see Sec-
tion 3.2.1), and to b∞ = 1/n − 1 the power-law case (see Sec-
tion 3.2.2).

Next:

• if the edge angle α is such that 2α < π , then m cannot be less
than 1, because m < 1 leads to a power law pattern of expo-
nent b∞ which is incompatible with Eq. (3.13). Also, the case
m = 1 is to be avoided as it corresponds to 2α = π (see Sec-
tion 2.4). Therefore m > 1. Close to the singularity, the fluid
exhibits a purely Newtonian pattern (b0 = 0; see also Sec-
tion 3.2.1). Moreover:

m = π

2α
and ϕ(θ) = sin

[
πθ/(2α)

]
.

• Proceeding as in the proof given right above, one can show
that if 2α > π , then m < 1. We eventually get:

m = Mα and ϕ = Φα(θ),

where Φα(θ) above is that of Eq. (3.10). The above observations
are formally summarized below.

Proposition 3.2. Given an antisymmetric flow of a Carreau–Yasuda fluid
(Eq. (2.3)) that takes place in a neighborhood of a sharp edge of angleα ∈
]0,π [, then the pressure field may be expressed as p(r, θ) = rmϕ(θ),
where:

ϕ(θ) =
{
sin[πθ/(2α)] if α ! π/2,

Φα(θ) if α > π/2.

and

m =
{ π

2α if α ! π/2,

Mα if α > π/2,

where the functions Φα and Mα are defined, respectively, in Eq. (3.10)
and in Eq. (3.11) above.

Next, the m = m(α) functions corresponding to Newtonian,
power-law and Carreau–Yasuda fluids are given on Fig. 6.

3.4. The yield stress fluids: Antisymmetrical flows case

The yield stress fluid case needs particular care as the function
f = f (γ̇ ) has no indisputable mathematical meaning for 0 argu-
ment. However, based on previous Example 2.2, one may define
the function G as:

G(zX) =
{

( zX−σ0
µ )1/n if zX > σ0,

0 if zX ! σ0.
(3.14)

Moreover, as the Herschel–Bulkley continuum moves like a solid
within the domain for which σ0/X > H/2, it follows that g(X) = 0
(where g is defined in Eq. (2.23)). Outside this domain, the func-
tion g is given by:

g(X) = 2
µ1/n X

H/2∫

σ0/X

z(zX − σ0)
1/n dz (3.15)
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Fig. 7. Antisymmetrical flow case: m vs. (singularity angle) α dependence for
Herschel–Bulkley yield stress fluids.

and after carrying out the integration one gets explicitly:

g(X) =






2n
µ1/n X3 [ (HX/2−σ0)

(2n+1)/n

2n+1 + σ0
(HX/2−σ0)

(n+1)/n

n+1 ] if X > 2σ0
H ,

0 if X ! 2σ0
H .

When X → +∞, g(X) has the following asymptotic pattern:

g(X) ∼
X→+∞

C X1/n−1 (3.16)

where C is a nonzero real constant, and b∞ = 1/n − 1.
A solid-like behavior is obtained for m > 1 (since X(r, θ) tends

to 0 as r tends to 0), while for m < 1 the continuum body exhibits
a power law fluid behavior. Specifically, by a reasoning similar to
that in the precedent section, one shows that (see also Fig. 7):

Proposition 3.3. Given an antisymmetric flow of a Herschel–Bulkley
(yield stress) fluid that takes place in a neighborhood of an edge of angle
α ∈ ]0,π [, then:

• for 2α < π , the fluid exhibits a solid-like behavior,
• for 2α > π , the pressure field is given by p(r, θ) = rmϕ(θ), where

m = Mα , and ϕ(θ) = Φα(θ). Mα and Φα are actually those ob-
tained in Section 3.2—and are recalled below for convenience:

m = Mα = β(α) + n − 1
β(α) − 1

, (3.17)

where:

β(α) = 1
2

[
1− n ±

√
(n − 1)2 + 4δ2n

]
and δ = π

|π − 2α| ,

Φα is to be obtained numerically, as in Section 3.2.

3.5. Symmetric flows case

This section methodology for solving the problem of symmetri-
cal flows of generalized Newtonian and yield stress fluids is similar
in spirit to the one for antisymmetrical flows in the precedent sec-
tions. First, we deal with the issue of finding the pressure field
for power law fluids, followed by results for more general fluids.
As the subsequent calculations are similar in nature to those of
previous sections (which addressed the problem of antisymmetric
flows), we do not present all calculation details. However the pecu-
liarities of symmetrical flows are made bold. Moreover, the results
will be presented in terms of Mα and Φα .

We search for solutions p(r, θ) = rmϕ(θ) + o(rm), m > 0 to
Eq. (2.22). In doing so, the least m value is computed numerically.
The relationship between ϕ and m is given by Eq. (3.5). The dif-
ference with respect to the antisymmetric flow case lays on the
prescribed boundary conditions (compare Eq. (3.6) vs. Eq. (3.7)).

Next, for a Newtonian fluid symmetric flow, the function ϕ and
power m > 0 must satisfy ϕ′′ +m2ϕ = 0, ϕ′(0) = 0, ϕ′(α) = 0. The
least m > 0 value for which this equation has a nontrivial solution
is m = π/α, to which corresponds ϕ(θ) = sin[πθ/α].

Fig. 8. Successive numerical iterations that converge towards the solution ϕ = Φα/2,
where α = 3π/4 and n = 10 have been arbitrarily chosen to exemplify.

Fig. 9. The pressure field p(x, y) in Cartesian coordinates, where α = 3π/4 and n =
10 have been arbitrarily chosen to exemplify.

3.5.1. Power-law fluid case
A solution p(r, θ) = rmϕ(θ) valid for a symmetrical flow around

a sharp edge must satisfy ϕ′(0) = 0 and ϕ′(α) = 0 (see the bound-
ary conditions in Eq. (3.7) and Fig. 3(c) and Fig. 3(d)). These spe-
cific boundary conditions lead to considering two types of solu-
tions to Eq. (3.5):

• solutions for which ϕ′(θ) vanishes only for θ ∈ {0,±α}; in this
case the least m > 0 value is m = Mα/2 (with Mα/2 given by
Eq. (3.17); see also Remark 3.3) and ϕ = Φα/2.

• solutions for which ϕ′ ≡ 0, which in turn triggers m = 1−n to
ensure compatibility with Eq. (3.5) and that ϕ = 1.

Let us remember the goal is to find a solution ϕ to the bound-
ary value problem Eq. (3.5) and Eq. (3.7) that corresponds to the
least positive m value. Given that Mα/2 > 1 for any angle α ∈ ]0,π [
and that 1 − n < 1 in the shear thinning case, one readily obtains
the following:

Proposition 3.4. Let an n-power fluid symmetric flow take place in a
sharp edge neighborhood of angle α ∈ ]0,π [. Then the pressure field
may be expressed as p(r, θ) = rmϕ(θ), where:

m =
{
1− n if 0 < n < 1 (shear thining pattern),

Mα/2 if n # 1 (shear thicking pattern).
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Fig. 10. The m vs (edge angle) α dependence for a Herschel–Bulkley fluid (as defined in Eq. (2.4) in Section 2.1). On the left n = 0.5 and the fluid is shear thinning; on the
right n = 2 and the fluid is shear thicking; the values of n were chosen arbitrarily to exemplify.

M above is that of Eq. (3.17), and

ϕ(θ) =
{
1 if 0 < n < 1,

Φα/2 if n # 1.
(3.18)

As an aside, one observes that Proposition 3.4 is this section coun-
terpart of Proposition 3.1 that concerns antisymmetric flows.

We present on Fig. 8 the iterations converging towards the
solution ϕ = Φα/2, and on Fig. 9 the pressure field in Cartesian
coordinates.

3.5.2. General case
The precedent section theoretical framework can be used to

study the flows around geometrical singularities for more com-
plex fluids. Following along the lines of previous sections that dealt
with antisymmetrical flows, one sees that what matters most is
the constitutive equation limiting behavior for low and high shear
rates.

Specifically, for a fluid whose shear rate dependent viscosity ex-
hibits the following asymptotic patterns:

f (γ̇ ) ∼
γ̇ →0

C0γ̇
a0 ,

f (γ̇ ) ∼
γ̇ →∞

C∞γ̇ a∞ ,

its behavior will be similar to that of a fluid for which either
f (γ̇ ) = γ̇ a0 (whenever α < π/2) or f (γ̇ ) = γ̇ a∞ (whenever α >
π/2). The m = m(α) dependence is fully determined by results
obtained for power law fluids. Moreover, a Herschel–Bulkley fluid
will behave solid-like whenever the edge angle is small enough,
i.e. α < π/2. To exemplify, we present on Fig. 10 the m = m(α)
function for a yield stress fluid in two situations: when n = 0.5
(shear thinning behavior) and when n = 2 (shear thicking behav-
ior), where the n values were chosen arbitrarily.

4. Conclusions

In this Letter we report several new results regarding the flows
around sharp edges (modelled as geometric singularities) of several
generalized Newtonian and Herschel–Bulkley and Bingham yield
stress fluids. Two types of flows are under scrutiny: antisymmetri-
cal (i.e. perpendicular to the edge symmetry axis) and symmetrical
(i.e. parallel to the singularity symmetry axis and directed towards
the sharp edge tip).

The main aim is to obtain the edge angle α influence upon the
pressure field p. For convenience, p is expressed in a polar coordi-
nate system centered at the edge tip. Next, p is assumed to have
an asymptotic expansion the terms of which consist of products of
two factors: one depends on the polar radius r and the other on
the polar angle θ . Regarding this later assumption, there is agree-
ment among various authors that the pressure field has to be of
the form used in this work: see for example [3] and/or [22,23] and
references cited therein. Next, we have set up a general framework
within which knowledge of the explicit viscosity dependence upon

shear rate γ̇ law is not necessary to obtain the pressure field in an
edge neighborhood.

For antisymmetrical flows, the influence of edge angle α upon
p(r, θ) is studied numerically. For the particular case of power
law fluids, excellent agreement is obtained with the results pre-
viously published in [3] and [5]. Next, we computed the pressure
field p(r, θ) for Carreau–Yasuda and Herschel–Bulkley yield stress
fluids—cases not previously studied. For yield stress fluids, our re-
sults show that:

• for edge angles in excess of π/2 (i.e. flows over the edge tip,
see Fig. 3(a)) the material does yield and behaves liquid-like;

• for edge angles less than π/2 (in which case the flow is such
that parts of the material are trapped inside a sharp cavity;
see Fig. 3(b)), close to the singularity tip the fluid does not
yield and behaves solid-like;

The symmetrical flow around singularity, an issue not previ-
ously addressed—save for the power law viscosity in [3]—is studied
within our general framework. The pressure p dependence upon
angle α is obtained for both quasi-Newtonian and Bingham fluids
in a manner similar to the antisymmetrical flow case.
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