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Abstract. In this paper, we obtain new models for gravity driven shallow
water laminar flows in several space dimensions over a general topography.
These models are derived from the incompressible Navier Stokes equations
with no-slip condition at the bottom and include capillary effects. No partic-
ular assumption is made on the size of the viscosity and on the variations of
the slope. The equations are written for an arbitrary parametrization of the
bottom and an explicit formulation is given in the orthogonal courvilinear
coordinates setting and for a particular parametrization so called ”steepest
descent” curvilinear coordinates.
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1 Introduction

Mathematical models and numerical simulations for the flow of a relatively
thin layer of fluid under the influence of gravity over a complex relief have
important applications in natural processes such as ocean modeling, flows
in rivers and coastal areas, debris avalanches or industrial processes such
as coating flows with applications ranging from a single decorative layer on
packaging to multiple layers coating on photographic film. See the review
paper on thin fluid dynamics by Oron, Davis and Bankoff [8] and bibliogra-
phy therein for further references.

Herein, we consider the slow motion of a thin liquid layer over an arbitrary
topography. The fluid is assumed to be incompressible and Newtonian. It
is submitted to capillary forces at the free surface and a no slip-condition is
assumed at the bottom surface. Our particular interest is to take into account
as much as possible the influence of the topography in the flow equations.
The dynamics are now well understood in the flat case. For completeness,
let us summarize recent results obtained in the modelisation of flows down a
flat bottom. Given the fact that three dimensional Navier Stokes equations
are difficult to treat both analytically and numerically, in particular if the
boundary is free, it is important to obtain reduced models that are able
to capture the relevant features, but are mathematically more manageable.
Modeling thin films flows down inclined plane leads to a hierarchy of models.
The first stage of approximation are the lubrication models: under a suitable
scaling, the fluid speed and pressure are determined by the local fluid height
and its dervatives. In that case we obtain a model for the local fluid height
in the form

∂t h = G(h, ∂xmh), (1)

where G involves various algebraic powers and differentiation orders of h.
This type of equations is obtained by means of asymptotic expansions in
power of ε, usually called film parameter or aspect ratio between the width of
the layer and the typical length of the phenomena in the streamwise direc-
tion. The simplest model obtained in this way is the Benney’s equation [12].
The simplification brought by this reduction has permitted a first study of
the nonlinear development of waves using dynamical system theory [13]. Un-
fortunately, Benney’s equation exhibits finite time singularities and is only
valid for small amplitude waves.

In order to obtain models valid for thicker flows, one considers shallow
water type flows: a specific shape for the velocity profile is assumed together
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with a hydrostatic field assumption. Averaging the streamwise momentum
equation and the divergence free condition, one obtains an evolution system
for the local fluid height h and the local flow rate q =

∫ h

0
u(z)dz. As a first

approximation, one can assume that the velocity is constant along the fluid
height: this approach is justified for shallow water flows of incompressible
Newtonian fluids with negligible viscosity: see Perthame and co-authors [7]
for a formal derivation from the Navier Stokes equations and numerical sim-
ulations of the resulting shallow water equations, Bouchut and co-authors
[1, 2] for the case of non-flat bottoms. When the viscosity is not small and
a no slip condition at the bottom is assumed, we are in a regime where the
fluid layer is entirely a boundary layer: for inclined planes, the stationnary
solutions are of Nusselt type with a parabolic profile of velocity and constant
height. In that case, the first integral boundary layer model was derived
by Shkadov [11], assuming that the flow remains close to the Nusselt flow.
More recently, Ruyer-Quil and Manneville [5, 6] generalized this approach
and even derived second order models by introducing a third variable τ that
measures the departure of the wall shear from the shear predicted by the
parabolic velocity profile. Up to order one, this variable is determined by the
local fluid height h and the local disharge rate q: this yields a refined version
of the shallow water equations. The method of derivation is the following:
the Navier Stokes solutions are expanded along a basis of polynomials in
the cross-stream variable with slowly varying coefficients, these coefficients
being determined under specific rules of projections (collocation methods or
Galerkin methods): this leads to a family of models that differs one from the
other through different coefficients. In fact, this method generates a family
of models, all accurate to the same order, the coefficients only depend on the
basis chosen to expand the solutions and the projection rules. J.-P. Vila [14]
has unified the formulation of the different models into a family of shallow
water type models parametrized by free constants: under the shallow water
scaling, Navier Stokes solutions close to the Nusslet flow are expanded with
respect to ε, the film parameter, and different characteristic numbers of the
fluid ( Reynolds, Froude, Weber numbers). The expansion is inserted into
the exact average equations for the fluid height h and the discharge rate
hv =

∫ h

0
u, u being the component of the fluid velocity in the streamwise

direction. Dropping small terms to a fixed order in ε, a family of shallow
water models in a closed form is obtained. A linear stability analysis of con-
stant solutions is carried out and compared to the Orr-Sommerfeld stability
equations for the full Navier-Stokes system in the limit of large wavelength
in order to check the accuracy of the shallow water models.

When the topography is arbitrary, this approach has been generalized
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using the centre manifold framework [9, 10]: in that case the computations
are carried out in the neighbourhood of the Nusselt parabolic flow. Using
the centre manifold reduction, Roberts and co-workers obtained formally lu-
brication models [9] and shallow water type models [10] under the hypothesis
that the curvature of the underlying bottom surface is small. The models are
formulated in a particular system of curvilinear coordinates, namely the Dar-
boux coordinates, the two basis vectors tangent to the surface being pointed
in the direction of maximal and minimal curvature. The Darboux system
of coordinates has the disadvantage not to be defined at umbilic points i.e.
points where the principal curvatures coincide.

Whereas the situation is now well understood for the flat and almost flat
case from the modeling point of view, and also the mathematical theory be-
comes settled now [3, 4], the situation is different for arbitrary topography:
let us mention here the recent papers of Bouchut and co-authors [1, 2] on the
derivation of one dimensional and multidimensional shallow water models
from incompressible Euler equations (or Navier Stokes equations with small
viscous term) without any restriction on the topography and in the presence
of a Coulomb friction term. One of the interest of the approach proposed by
Bouchut and co-authors is that the derivation is valid for arbitrary topography

and the formulation does not depend on the parametrization of the surface
where the fluid flows. In this present paper, we consider the slow motion of a
relatively thin layer of fluid over an arbitrary topography. The fluid is incom-
pressible, Newtonian and the viscosity is not negligible. A no-slip condition
is assumed at the bottom surface. For completeness, we also assume that it
is submitted to capillary forces at the free surface. In this paper, we derive
shallow water equations from the incompressible Navier Stokes equations: as
a byproduct of the analysis, we will also obtain lubrication models.

The paper is organized as follows. In section 2, we formulate the Navier
Stokes equations and boundary conditions in a system of coordinates adapted
to the geometry of the bottom surface: during this step, we do not precise
the parametrization of the underlying surface where the fluid flows. We also
compute an exact evolution system for the physical height of the fluid h
and the average velocity, along the fluid height, parallel to the surface. This
evolution system is not in a closed form and some modeling assumptions are
necessary: classically, the pressure is supposed to be hydrostatic and the flow
is quasistationnary. In that paper, we follow the ideas introduced by J.-P.
Vila in [14] and these assumptions will be a result of a dimensional analysis
of the Navier Stokes system. In section 3, we rescale the equations: the
characteristic height of the fluid H is supposed to be small compared to the
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characteristic wavelength L of the flow variable in the streamwise direction.
We introduce the ”aspect ratio” ε = H

L
≪ 1. In the asymptotic regime

ε → 0, we compute an expansion, with respect to ε, of the Navier Stokes
solutions close to a basic Nusselt type flow. As a byproduct of the dimensional
analysis, we recover the classical modeling assumptions of the shallow water
equations. Inserting the asymptotic expansions of Navier Stokes solutions in
the evolution system for the fluid height h and the discharge rate

∫ h

0
u and

dropping ”small terms”, we obtain a shallow water system in a closed form.
In the scaling chosen, the fluid speed direction is mainly supported by the
”steepest descent” direction. Thus it is natural to introduce a specific para-
metrization of the surface where the fluid flows, so called ”steepest descent”
curvilinear coordinates. The first vector of the basis is tangent to the surface
and has the steepest descent direction, the third one is the upward normal
to the surface and the second one is deduced from the others through a
direct wedge product. In section 4, we write the shallow water system in the
”steepest descent” curvilinear coordinates and in a standard set of orthogonal
curvilinear coordinates. Finally, we compute lubrication models from the
shallow water system by eliminating the average velocity from the equations.

2 Navier Stokes equations with free surface

in curvilinear coordinates

In this section, we write the Navier Stokes equations in a system of coordi-
nates adapted to the geometry of the fluid layer. We first describe the change
of variables from cartesian coordinates to a system of coordinates adapted
to the bottom surface geometry and show how the principal differential op-
erators are transformed. We decompose the fluid speed in this new reference
frame and reformulate both the boundary conditions and the Navier Stokes
equations with these new coordinates and variables.

2.1 Curvilinear coordinates

Let y = z(x), x ∈ R
n, n = 1, 2 the graph of the function describing the

bottom surface S. The normal n to S is given by

n = (1 + ‖∇x z‖2)−
1

2

(
−∇x z

1

)
=

(
−s

c

)
, (2)

where ‖.‖ is the classical euclidian norm in R
n. The scalar c is the cosine of

the angle θ between n and the vertical (see figure 1). From this definition
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and c2 + ‖s‖2 = 1, we notice that

∂x c = −1

c
st ∂x s, ∂xs = c(1 − sst) ∂2

xx z, ∂2
xx z =

c2 Id + sst

c3
∂x s. (3)

Here, Hb = c ∂2
xx z denotes the curvature tensor of the bottom surface and

∂xs = (1 − sst)Hb. It is sometimes convenient not to work in cartesian
coordinates, but in a coordinate system adapted to the topography. This is
the point of view adopted here. In view of the fact that the models must be
solved numerically, it is important to have some flexibility in the choice of
coordinates and our models are written. In what follows, we assume that a
parametrization of the bottom surface ξ ∈ R

n 7→ x(ξ) ∈ R
n is given.

xx

z(x)

ξ

h(ξ, t)

ξ

Ωt

θ

S

Figure 1: Curvilinear coordinates

Define ~ξ = (ξ, ξ), a new system of coordinates, where ξ ∈ R
n is a curvilinear

abscissa along the bottom and ξ ∈ R the signed distance in the direction
of the normal. The horizontal coordinate x is given by the parametrization
ξ 7→ x(ξ). Denote ∂ξ x the Jacobian matrix of the transformation. We
assume for convenience that det(∂ξ x) > 0. In what follows, the fluid domain
Ωt is defined as

~X ∈ Ωt ⇔ ~X(ξ, ξ) =

(
x(ξ)

z(x(ξ))

)
+ ξ

(
−s(x(ξ))
c(x(ξ))

)
, 0 ≤ ξ ≤ h(ξ, t), (4)

where h is the fluid height. In the sequel, we shall use the same notations
introduced in [2].
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It is natural to define new velocity components using a decomposition of the
velocity ~U by jacobian matrix:

~U =
(
∂~ξ

~X
)

~V ⇐⇒
{

U = (∂ξX)V − V s,
U = 1

c
st (∂ξX) V + cV ,

(5)

with ∂ξX = (Id − ξ∂xs)∂ξ x, U, V ∈ R
n, U, V ∈ R. There are other possible

choices of decomposition: see [2] for further details.

Let us define the matrix A ∈ Mn+1(R) as

A =
(
∂~ξ

~X
)
−1

=

(
(∂ξX)−1 0

0 1

)(
Id − s st c s

−st c

)
. (6)

For further reference, we compute M̃ = AAt ∈ Mn+1(R):

M̃ =

(
M 0
0 1

)
, M = (∂ξ X)−1(Id − s st)(∂ξ X)−t ∈ Mn(R). (7)

The Jacobian J of the transformation is given by

J = det(∂~ξ
~X) =

1

c
det(∂ξ X) = det(M)−

1

2 .

Let us describe how the principal differential operators used in the Navier
Stokes equations are transformed through this change of variables.

Lemma 1 For any vector field ~Z and any symmetric tensor σ = σt, the

differential operators transform according to

J∇ ~X . ~Z = ∇~ξ
.(J A ~Z), ~U.∇ ~X = ~V .∇~ξ

, ∇ ~X = At ∇~ξ
,

J A−t∇ ~X .σ = ∇~ξ.(JPA At) +
J

2
P : ∇~ξ(A At),

(8)

with P = A−tσA−1.

For the proof of this lemma, see [2].

2.2 Reformulation of the Navier Stokes equations

The Navier Stokes equations for the fluid velocity ~U and the pressure p in
the domain Ωt read

∂t
~U + ~U.∇ ~X

~U + ∇ ~X p = −~g + µ∇ ~X . σ,

∇ ~X . ~U = 0.

(9)
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Here σ = ∂ ~X
~U + (∂ ~X

~U)t is the deformation tensor, µ measures the fluid
viscosity and the vector ~g represents the gravity forces. The density of the
fluid is supposed to be constant and set to 1. These equations come with
boundary conditions. We aim to write the Navier Stokes equations (9) and
boundary conditions in the reference frame introduced in the previous section
with the Jacobian decomposition of the velocity.

2.2.1 Boundary conditions

The Navier Stokes equations (9) come with boundary conditions at the bot-
tom ξ = 0 and at the free surface ξ = h(ξ, t). More precisely, we assume a
no-slip condition at the bottom

V (ξ, 0) = 0, V (ξ, 0) = 0, ∀ξ ∈ R
n. (10)

At the free surface ξ = h(ξ, t), we write that the fluid layer Ωt is advected by

the fluid speed ~V : this yields the mass conservation condition (or equivalently
an impermeability condition):

ht + V (., h).∇ξ h = V (., h). (11)

The other boundary condition at the free surface ξ = h(ξ, t) is the continuity
of fluid stress at that interface. For completeness, we take into account the
capillary effects. The atmospheric pressure patm is constant and set to zero.
Then the continuity of fluid stress reads

(σ − p Id) ~N = κH ~N, ∀ξ = h(ξ, t). (12)

The scalar H is the mean curvature of the free surface, κ measures the capil-
lary effects and ~N is the normal to the free surface. We are going to describe
more precisely the continuity of fluid stress with the help of the new variables
and the Jacobian speed ~V . Let us first compute ~N .

Lemma 2 The unitary normal to the free surface ξ = h(ξ, t) is given by

~N = α At

(
−∇ξ h

1

)
, (13)

where α−1 = ‖At

(
−∇ξ h

1

)
‖.

The proof of this lemma is straightforward and can be found in [2]. Now
associated to the deformation tensor σ, introduce P as

P = A−t σ A−1 =

(
P Z
Zt f

)
. (14)
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Lemma 3 The terms P, Z, f of the tensor P = A−t σ A−1 with

σ = ∂ ~X
~U + (∂ ~X

~U)t

are given by

Z = ∂ξ(M
−1 V ) + ∇ξ V + 2 ∂xs

t(Id +
s st

c2
)(∂ξ X) V,

f = 2∂ξ V , P = Q + Qt,

where

Q = ∂ξ(M
−1 V ) + ∂ξ

(
(∂ξ X)t

)
.
(
(∂ξ X) V − V s

)

+
(st

c
(∂ξ X) V + cV

)
∂ξ(

(∂ξ X)t

c
s).

In the new system of coordinates, the continuity of the fluid stress (12) at
the free surface ξ = h(ξ, t) can be written

PhM̃h

(
−∇ξ h

1

)
− ph

(
−∇ξ h

1

)
= κH

(
−∇ξ h

1

)
, (15)

where the subscript ph (resp. Ph,M̃h) is the value of p (resp. P,M̃) at the
free surface. In the sequel, we shall note the value of flow unknowns at the
free surface with a similar subscript. Finally we can write the system (15) in
the form

µ Ph Mh ∇ξ h + µ Zh + ph Mh ∇ξ h = −κH∇ξ h,

−µ(Mh Zh)
t ∇ξ h + µ fh − ph = κH.

(16)

2.2.2 Free divergence equation and momentum equation

In that section, we write the Navier Stokes equations using the curvilinear
coordinates and the Jacobian decomposition of the velocity. Using chain
rules (8), the divergence free condition yields

J ∇ ~X . ~U = ∇~ξ
.(J ~V ) = ∇ξ.(J V ) + ∂ξV = 0. (17)

Multiplying the momentum equation in (9) by the matrix A, one finds

∂t
~V + A(~V .∇~ξ

)(A−1~V ) + M̃∇~ξ
p = −A~g

+
µ

J
M̃
(
∇~ξ

.(JPM̃) +
J

2
P : ∇~ξ

M̃
)
. (18)
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We decompose the advection term A(~V .∇~ξ
)(A−1~V ) in the form

A(~V .∇~ξ
)(A−1~V ) = ~V .∇~ξ

~V − ~Γ(~V ), (19)

with

~Γ(~V ) =

(
Γ(~V )

Γ(~V )

)
=

(
(∂ξ X)−1

(
− (∂2

ξξX).V.V + 2V (∂ξs)V + Γ(~V )s
)

−cV t(∂ξ x)t(∂2
xx z) (∂ξ X) V

)
.

The momentum equation (18) can be written

∂t
~V + ~V .∇~ξ

~V + M̃ ∇~ξ
p =−A~g + ~Γ(~V )

+
µ

J
M̃
(
∇~ξ

. (JPM̃) +
J

2
P : ∇~ξ

M̃
)
. (20)

Note that the vector ~Γ(~V ) has a physical interpretation: it represents the
centrifugal forces experienced by the fluid and associated to the change of
reference frame.

We aim to write a shallow water model for the fluid layer: that consists essen-
tially in an equation of mass conservation and an equation for the streamwise
velocity averaged along the fluid height. For that purpose, we separate the
equation on the horizontal (resp. vertical) velocity V (resp. V ) and obtain
the system

∂t V + ~V .∇~ξ
V + M ∇ξ p = −g c (∂ξ X)−1 s + Γ(~V )

+
µ

J
M
(
∇ξ.(JPM) + ∂ξ(JZ) +

J

2
P : ∇ξM

)
, (21)

∂t V + ~V .∇~ξ
V + ∂ξ p = −g c + Γ(~V )

+
µ

J

(
∇ξ.(JMZ) + ∂ξ(J f) +

J

2
P : ∂ξM

)
. (22)

2.3 Averaged equations

In what follows, we obtain exact evolution equations for the fluid height h
and the streamwise velocity averaged along the fluid height. This system is
composed of an equation on mass conservation and a momentum equation.
Let us first write the equation on mass conservation with average quantities.
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In the sequel, all the integrals computed are integrals of functions with respect
to the crosstream variable ξ: for a function f(ξ, ξ), we shall note

∫
f =

∫
f(ξ, ξ) dξ, (23)

and the bounds of integration are specified for each calculation.

Integrating the divergence free condition (17) over (0, h) yields

Jh V h +

∫ h

0

∇ξ. (JV ) = Jh V h + ∇ξ.
( ∫ h

0

J V
)
− Jh Vh.∇ξ h = 0. (24)

Here and in the sequel, the subscript Jh (resp. Vh, V h, ph,...) denotes the
value of J (resp. V , V , p) at the free surface ξ = h(ξ, t). Using the mass
conservation condition (11), one finds

Jh∂t h + ∇ξ.
( ∫ h

0

J V
)

= 0. (25)

Since J is time independent, equation (25) can also be written

∂t(

∫ h

0

J) + ∇ξ.
( ∫ h

0

J V
)

= 0. (26)

In order to write the mass conservation equation in a simple form, we intro-
duce the average quantities

h̃ =

∫ h

0

J, h̃ ṽ =

∫ h

0

J V,

and the mass conservation equation (26) reads

h̃t + ∇ξ.
(
h̃ ṽ
)

= 0. (27)

In the following, we shall write an evolution system for the more natural
quantities (h̃, h̃ṽ). We will see later that under suitable hypothesis, we can

deduce h and
∫ h

0
V from h̃ and h̃ṽ. Integrating the left hand side of equation

(21) over the interval (0, h) yields

∫ h

0

J(∂t V + ~V .∇~ξ
V + M ∇ξ p) = ∂t(

∫ h

0

JV ) +∇ξ.(

∫ h

0

JV ⊗ V )

+∇ξ.(

∫ h

0

JM p)−
∫ h

0

p∇ξ.(JM)

+Jh(ht + Vh.∇ξ h − V h)Vh − JhphMh∇ξh. (28)
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Furthermore, we integrate the right hand side of (21) and use the boundary
conditions (16). We find

∂t

(∫ h

0

J V
)

+∇ξ.
(∫ h

0

JV ⊗ V + JpM
)

=

−gc

∫ h

0

J(∂ξ X)−1s−µ J0M0Z0 +

∫ h

0

J Γ(~V ) +

∫ h

0

p∇ξ.(JM)

+
µ

2

∫ h

0

JM(P : ∇ξM) − µ

∫ h

0

J (∂ξM) Z

+ µ∇ξ.

∫ h

0

JMPM − µ

∫ h

0

JPM :: ∂ξ M

+ µJhMhZh − µJhMhPhMh∇ξ h + JhphMh∇ξh,(29)

where (A :: ∂ξB) is the operator defined by (A :: ∂ξB)i = tr(A∂ξB
i), Bi

being the i − th column of B. The continuity of the fluid stress at the free
surface yields

µJhMhZh − µJhMhPhMh∇ξ h + JhphMh∇ξh = −κHJhMh∇ξh.

As a consequence, the equation for the average momentum
∫ h

0
J V = h̃ṽ

reads

∂t

( ∫ h

0

J V
)
+∇ξ.

(∫ h

0

JV ⊗ V + JpM
)

+ κHJhMh∇ξh =

− gc

∫ h

0

J(∂ξ X)−1s − µ J0M0Z0 +

∫ h

0

J Γ(~V )

+

∫ h

0

p∇ξ.(JM) +
µ

2

∫ h

0

JM(P : ∇ξM) − µ

∫ h

0

J (∂ξM) Z

+ µ∇ξ.

∫ h

0

JMPM − µ

∫ h

0

JPM :: ∂ξ M. (30)

This equation is exact and no approximation has been done for the moment
in order to obtain an evolution system for (h̃, h̃ṽ) in a closed form: this shall
be done in the forthcoming section.

3 Shallow water asymptotics

In the following, we derive the shallow water equations from the Navier Stokes
system (17,18) and boundary conditions (10,11,16): scaling these equations,
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we shall precise in which parameter regime the classical assumptions made
for the derivation of the shallow water equations (hydrostatic pressure, qua-
sistationnary flow) hold true. Then we compute an asymptotic expansion
of the Navier Stokes equations with respect to the aspect ratio ε = H

L
≪ 1

between the characteristic height of the fluid and L the characteristic wave-
length of the solutions: inserting these approximations into the averaged
equation (30) and dropping ”small” terms, we deduce an evolution system

for h̃ and h̃ṽ =
∫ h

0
J V in a closed form.

3.1 Scaling of the equations

Let U0 and H be respectively the characteristic velocity and height of a flow.
We define classically some dimensionless numbers, respectively the Froude
number F, the Reynolds number Re and the Weber number We:

F =
U0√
g H

, Re =
H U0

µ
, We =

H U2
0

κ
. (31)

We do not precise here the characteristic speed U0: nevertheless, several
choices are possible. As an example for an inclined plane with a non zero
slope φ, the stationnary Nusselt solution is given by

h = H, V = 0, V =
g sin(φ)

µ
(Hξ − ξ

2

2
).

Thus in that case a typical choice of speed U0 could be U0 =
g H2

2µ
sin(φ) and

F2 =
Re

2
.

In the sequel, we consider functions with a characteristic wavelength L
such that the aspect ratio ε = H/L ≪ 1. We introduce the scaling

x = Lx̃, ξ = Lξ̃, h = Hh̃, ξ = Hξ̃, t =
L

U0

t̃

V = U0Ṽ , V =
H

L
U0Ṽ , p = gHp̃.

(32)

Let us describe the bottom surface in that scaling. In order to deal with
arbitrary topography, we will suppose that s = O(1). This means that
∇x z = O(1) and imposes the scaling on z = Lz̃. Let us describe the curva-
ture of the bottom surface. Here, we want to separate the long wavelength
assumption on the free surface and the curvature of the bottom surface. For
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that purpose, we assume that the curvature of the surface is of order O(1/R)
where R is the characteristic radius of curvature of the bottom surface and
is not necessarily of order O(L). Then, the derivatives ∂xs and ∂2

xxz are
O(1/R). Let us introduce the ratio θR = L

R
between the characteristic wave-

length of flow variables and R the characteristic curvature of the bottom
surface, and define the rescaled bottom curvature Hb = θR

L
H̃b. We shall see

later that chosing different values for θR yields different type of models, in
particular the influence of capillarity.

Here we have introduced the parameter θR coherent with the scaling, which
describes the typical curvature of the bottom surface. It is important to
note that we have made no restriction on the amplitude of the inclination
and curvature of the bottom: the size of these parameters with respect to ε,
especially the characteristic curvature θR, will be discussed at the end of the
paper to distinguish different models.

For the other quantities Γ,H, P, Z, f , we choose the natural scaling:

Γ =
U2

L
Γ̃, H =

1

L
H̃, P =

U

L
P̃ , f =

U

L
f̃ , Z =

U

H
Z̃.

Now we write the Navier Stokes equations in a non dimensional form. Drop-
ping the ∼ from the equations (21),(22), we find:

∂t V + ~V .∇~ξ
V +

M

F2
∇ξ p = − 1

εF2
c(∂ξ X)−1s

+ (∂ξ X)−1
(
θRΓ(~V )s− (∂2

ξξX).V.V + 2ε θRV (∂ξs)V
)

+
1

JεRe

(
∂ξ(JZ) + ε2

(
∇ξ.(JPM) +

J

2
P : ∇ξ M

))
,(33)

∂tV + ~V .∇~ξV +
1

ε2 F2
∂ξp = − 1

ε2 F2
c +

θR

ε
Γ(~V )

+
1

JεRe

(
∇ξ.(JMZ) + ∂ξ(Jf) +

J

2
P : ∂ξM

)
. (34)

Note that, in these equations, the rescaled quantities related to the change
of reference frame are given by

J =
det(∂ξ x)

c
det
(
Id − εθRξ(∂xs)

)
, ∂ξ X =

(
Id − εθRξ(∂xs)

)
∂ξ x,

M = (∂ξ x)−1
(
Id − εθRξ(∂xs)

)
(Id − s st)

(
Id − εθRξ(∂xs)

t
)
(∂ξ x)−t,

(35)
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whereas the rescaled quantites associated to the flow variables read:

Z = ∂ξ(M
−1V ) + 2εθR(∂ξs)

t(Id +
s st

c
)∂ξ X V + ε2∇ξV ,

f = 2∂ξV , P = Q + Q
t
,

(36)

with Q defined as

Q = ∂ξ(M
−1V ) + ∂ξ

(
(∂ξ X)t

)
.
(
(∂ξ X) V − εV s

)

+
(st

c
(∂ξ X) V + ε cV

)(∂ξ X)ts

c
. (37)

The particular choice of characteristic velocity for the vertical velocity V
implies that the divergence free condition (17) is preserved under that scaling

∇ξ. V + ∂ξV = 0. (38)

We write the rescaled boundary conditions at the bottom ξ = 0 and at the
free surface ξ = h(ξ, t). On the one hand, the no slip conditions at the
bottom and the impermeability condition (see (10) and (11)) are unchanged
under the shallow water scaling:

V (., ξ = 0) = 0, V (., ξ = 0) = 0,

∂t h + Vh.∇ξ h = V h.
(39)

On the other hand, the continuity of fluid stress (16) at the free surface reads

ε

F2
phMh∇ξ h +

1

Re
MhZh −

ε2

Re
MhP hMh∇ξ h = −ε2H

We
Mh∇ξ h,

ε

Re

(
fh − (MhZh)

t∇ξ h
)
− 1

F2
ph =

εH
We

.

(40)

Finally, we write the nondimensional counterpart of the averaged equations
(26) and (30): this yields exact evolution equation for

h̃ =

∫ h

0

J, h̃ṽ =

∫ h

0

J V (41)

where h, J, V are the rescaled flow variables. The dimensionless continuity
equation reads

∂t(

∫ h

0

J) + ∇ξ.
( ∫ h

0

J V
)

= 0. (42)
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Integrating the equation (33) over the interval (0, h) and using the rescaled
boundary conditions yields the averaged momentum equation:

∂t

( ∫ h

0

JV
)

+ ∇ξ.(

∫ h

0

JV ⊗ V ) +
1

F2
∇ξ.(

∫ h

0

JpM) +
εH
We

JhMh∇ξ h =

− 1

εF2
c

∫ h

0

J(∂ξ X)−1s− 1

εRe
J0∂ξV0

+

∫ h

0

J(∂ξ X)−1
(
θRΓ(~V )s− (∂2

ξξX).V.V + 2εθRV (∂xs)V
)

(43)

+
1

F2

∫ h

0

p∇ξ.(JM)− 1

εRe

∫ h

0

J(∂ξ M) Z

+
ε

Re

(
∇ξ.

∫ h

0

JMPM +

∫ h

0

J

2
M(P : ∇ξ M) − JPM :: ∂ξM

)
.

3.2 Asymptotics

In the sequel, we write an evolution system for h̃ =
∫ h

0
J and h̃ṽ =

∫ h

0
JV .

Recall the continuity equation (42)

∂t h̃ + ∇ξ. (h̃ṽ) = 0. (44)

We shall write an approximate evolution equation for h̃ṽ using (43). For that
purpose, we assume that the aspect ratio ε = H

L
≪ 1 and we introduce the

dimensionless parameters

α =
εF2

Re
, β = εRe, δ =

εRe

F2
, λ =

Re

F2
, κ =

εF2

We
. (45)

From the assumption ε ≪ 1 and considering that the Reynolds number Re

and the Froude number F are of order 1, we deduce that α, β, δ ≪ 1 and
λ = O(1). In fact, we shall see later that the expansions carried out in what
follows remain valid provided that α, β, δ ≪ 1: thus, the range of validity of
the models obtained here is not restricted to Reynolds and Froude numbers
of order one. In particular, we can choose Re → ∞ as ε → 0. To see the
influence of the capillary effects, we shall assume that κ = O(1).

We now study the influence of the shallow water scaling on the Navier Stokes
equations. Using the equation (34), a straightforward computation yields an
equation for the pressure:

16



∂ξp + c=
α

J

(
∇ξ.(JMZ) + ∂ξ(Jf) +

J

2
P : ∂ξM

)

+
θRβ

λ
Γ(~V ) − αβ(∂tV + ~V .∇~ξV ) := Ψp(~V , ~ξ, t). (46)

In the asymptotic regime α, β ≪ 1, θR, λ = O(1), we clearly recover the
classical assumption of hydrostatic pressure made in the derivation of shallow
water equations. Moreover, the continuity of the fluid stress at the free
boundary ξ = h implies that the pressure at the free surface is given by (see
equation (39)):

ph = −κH + α
(
fh − (MhZh)

t∇ξ h
)

:= Πp(~Vh, ξ, t). (47)

Integrating (46) with the boundary condition (47), one finds

p = c(h − ξ) + Πh(~Vh, ξ, t) −
∫ h

ξ

Ψp(~V , ~ξ, t). (48)

If we consider that the derivatives of h, V, V are bounded and of order O(1),
one can see that p is determined up to order one and that

p = c
(
h − ξ

)
− κH + O

(
α +

θR

λ
β
)

= p(0) + O
(
α +

θR

λ
β
)
. (49)

Let us now see the influence of the scaling assumption ε, α, β, δ ≪ 1 on the
velocity profile. Expanding rescaled quantities in (35),(36) with respect to
ε, α, β, δ ≪ 1 and λ, κ = O(1), we find for the rescaled quantities associated
to the change of reference frame

J = J
(
1 − εθR ξ tr(∂x s)

)
+ O(ε2θ2

R),

∂ξ X = ∂ξ x − εθR ξ (∂ξs) + O(ε2θ2
R),

M = M + 2εθR ξ (∂ξ x)−1
(
(Id − s st)Hb(Id − s st)

)
(∂ξ x)−t + O(ε2θ2

R),

with J =
det(∂ξ x)

c
and M = (∂ξx)−1(Id − sst)(∂ξx)−t. The rescaled quan-

tities related to the flow unknows have the expansion

h̃ = Jh − εθRJtr(∂x s)
h2

2
+ O(ε2θ2

R)

Z = M
−1

∂ξV − 2εθR (∂ξ x)tHb(∂ξ x) ξ (∂ξV ) + O(ε2θ2
R + ε2), (50)
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Note that from the expansion of h̃, we can easily obtain an expansion of the
physical fluid height h:

Jh = h̃ + εθRtr(∂x s)
h̃2

2J
+ O(ε2θ2

R).

Now we insert the previous expansions into the equation (33) and find

∂2
ξ ξ

(JV )−λ cJ(∂ξ x)−1s = βJ(∂t V + ~V .∇ξ V − Γ(~V )) + δJ M∇ξ p

− δθRξ cJ(∂ξ x)−1
(
tr(∂x s)Id + ∂xs

)
s

+ εθRJ
(
tr(∂xs)∂ξ(ξ∂ξV ) − 2(∂ξ x)−1(∂xs)(∂ξ x) ∂ξV

)

+ 2εθRJ(∂ξ x)−1 (∂xs) (∂ξ x)∂2
ξ ξ

(V ) + O(ε2 + ε2θ2
R). (51)

In order to simplify the notations, we shall define the right hand side of
(51) as ΨV (~V , p, ~ξ, t) and (51) reads

∂2
ξ ξ

(JV ) − λ cJ(∂ξ x)−1s = ΨV (~V , p, ~ξ, t). (52)

The continuity of the fluid stress at the free boundary ξ = h implies (see
equation (39)):

Zh = αδ
(
P hMh −

(
fh − (MhZh)

t∇ξ h
)
Id
)
∇ξ h = O(ε2),

∂ξVh = 2εθR(∂ξ x)−1(∂xs)(∂ξ x) h∂ξVh + O(ε2 + ε2θ2
R) = Πv(~Vh, ξ, t). (53)

The no-slip condition yields
V0 = 0. (54)

Integrating (52) with respect to the cross stream variable ξ with the boundary
conditions (53,54), one obtains

V = −λ c(hξ − ξ
2

2
) (∂ξ x)−1s− 1

J

∫ ξ

0

∫ h

z

ΨV (~V , p, ~ξ, t) + ξΠv(~Vh, ξ, t). (55)

It is easily seen that up to order one in ε, α, β, δ, the streamwise speed V is
uniquely defined by

V = −λ c(hξ− ξ
2

2
) (∂ξ x)−1s+O(εθR +β + δ) = V (0) +O(εθR +β + δ). (56)
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Up to order one, the profile of the streamwise speed V is parabolic with re-
spect to the variable ξ, when the bottom surface is an inclined plane, this
corresponds exactly to a Nusselt stationnary flow. In the present case, the
flow is locally close to a Nusslet type flow which is a local equilibrium. Thus
the scaling assumption ε ≪ 1 implies that at each time, the solution is close
to a local equilibrium: that is the other classical assumption made in the
derivation of shallow water equations.

Finally we obtain an asymptotic expansion for V by integration of the diver-
gence free condition ∇ξ .V + ∂ξV = 0 with the no-slip condition V (ξ, 0) = 0.
One easily obtains

V = −
∫ ξ

0

∇ξ.V = V
(0)

+ O(β + δ + εθR), (57)

with V
(0)

= −
∫ ξ

0
∇ξ.V

(0).

We describe now the method to derive shallow water equations from the
incompressible Navier Stokes equations in the parameter regime described
before: the method is mainly based on an iterative scheme. First, based on

equations (48,55,57), we define the sequence of functions (V (n), V
(n)

, p(n))n∈N

by

V (0) =−λ c(hξ − ξ
2

2
) (∂ξ x)−1s,

V
(0)

=

∫ ξ

0

∇ξ.V
(0) dz,

p(0) = c
(
h − ξ

)
− κH. (58)

Then at the (n + 1)-step, the functions (V (n+1), V
(n+1)

, p(n+1)) are defined
as

V (n+1) = V (0) − 1

J

∫ ξ

0

∫ h

z

ΨV (~V (n), p(n), ~ξ, t)ds dz + ξΠv(~V
(n)
h , ξ, t),

V
(n+1)

=−
∫ ξ

0

∇ξ.V
(n+1) dz,

p(n+1) = c(h − ξ) + Πh(~V
(n+1)
h , ξ, t) −

∫ h

ξ

Ψp(~V
(n+1), ~ξ, t) dz. (59)

19



Then, this sequence of functions converges formally to (V, V , p) a solution of
the Navier Stokes equations. More precisely, denote F the operator so that
the iterative scheme define previously reads

(
V (n+1), V

(n+1)
, p(n+1)

)
= F

(
V (n), V

(n)
, p(n)

)
. (60)

Then any solution
(
V, V , p

)
of the Navier Stokes equations with boundary

conditions is a fixed point of F . Moreover, this operator is O(α+β + δ + ε+
εθR)-Lipschitz on any bounded set. As a consequence, and provided that the

sequence (V (n), V
(n)

, p(n)) and the derivatives of the Navier Stokes solutions
remain uniformly bounded with respect to α, β, δ, ε, εθR, one can prove by
induction the following estimate

max(|V − V (n)|, |V − V
(n)|, |p− p(n)|) = O

(
(α + β + δ + ε + εθR)n+1

)
. (61)

As a consequence, we obtain an asymptotic expansion of V, V , p with respect
to ε, α, β, δ to any order in ε, α, β, δ. This step of the computation can be
implemented using a formal computation software. Using this expansion, we
easily deduce an expansion of ṽ and compute an expansion of the different
terms in the average equation (43). Dropping terms in this equation of a
fixed order, we obtain a hierarchy of models. In what follows, we compute
the shallow water model obtained by dropping all small terms in the average
equation. We shall see that an approximation of V, p up to order one is
needed to carry out such a computation. Let us first compute the zeroth
order approximation of V, p and see which terms we keep in (43).

3.2.1 Asymptotic to order 0

In that section, we compute the zeroth order approximation of V, p and check
which terms we keep in (43). Recall that V = V (0) + O(β + δ + ǫθR) with

V (0) = −λ c(hξ − ξ
2

2
)(∂ξ x)−1s. (62)

We can compute an approximation of ṽ:

h̃ṽ =

∫ h

0

J V =

∫ h

0

J V (0) + O(εθR + β + δ)

=−λ c J(∂ξ x)−1s

∫ h

0

(hξ − ξ
2

2
) + O(εθR + β + δ)

=−λ c J
h3

3
(∂ξ x)−1s + O(εθR + β + δ). (63)

20



Then up to zeroth order, we find that

ṽ = −λ c(∂ξ x)−1s
h̃2

3J
2 .

We calculate the zeroth order approximation of the other terms in the left
hand side of (43) as functions of h̃, ṽ.

The advection term
∫ h

0
J V ⊗ V reads:

∫ h

0

J V ⊗ V =J

∫ h

0

V (0) ⊗ V (0) + O(εθR + β + δ),

=λ2c2J(∂ξ x)−1s⊗ (∂ξ x)−1s

∫ h

0

(hξ − ξ
2

2
)2 + O(εθR + β + δ),

=
2λ2c2

15

h̃5

J
4 (∂ξ x)−1s⊗ (∂ξ x)−1s + O(εθR + β + δ),

=
6

5
h̃ṽ ⊗ ṽ + O(εθR + β + δ). (64)

Integrating the pressure equation (46) with the boundary condition (47), one
proves that the pressure p is given by

p = −κH + c(h − ξ) + O(εθR + α). (65)

Up to zeroth order, the average terms containing the pressure are given by:
∫ h

0

J p M = J M
(
c
h2

2
− κHh

)
,

∫ h

0

p∇ξ.(J M) = ∇ξ.(J M)
(
c
h2

2
− κHh

)
.

(66)

As a consequence, the average equation (43) reads:

∂t (h̃ ṽ) +
6

5
∇ξ.(h̃ṽ ⊗ ṽ) +

δ

β
J M∇ξ(c

h̃2

2J
) − κ

δ

β
h̃M∇ξH =

− 1

β

(
λc

∫ h

0

J(∂ξX)−1s + J∂ξV (0)
)

+

∫ h

0

J(∂ξX)−1
(
θRΓ(~V )s− (∂2

ξξX).V.V
)

− 1

β

∫ h

0

J(∂ξM) Z + O
(
(εθR + α)

δ

β
+ β + δ + εθR

)
. (67)
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It is a straightforward computation to prove that the zeroth order terms in
the right hand side of (67) read

∫ h

0

J(∂ξ X)−1(θRΓ(~V )s− (∂2
ξξ X).V.V ) =

− 2h̃5

15J
4λ2c2(∂ξ x)−1

(
(∂2

ξξx).(∂ξ x)−1s.(∂ξ x)−1s + θR (stHb s) s
)

+ O(εθR + β + δ).

1

β

∫ h

0

J(∂ξ M) Z = − δ

β
c(∂ξ x)−1 (∂x s) s

h̃2

J
+ O

(εθR

β
(δ + δθR + β + εθR)

)
.

Due to the presence of the factor − 1
β

in front of λ c
∫ h

0
J(∂ξ X)−1s+J∂ξV (0),

we need an expansion of the wall shear ∂ξV (0) and the average velocity ṽ up
to order 1 in order to eliminate ∂ξV (0) from (67). This is done in the next
section.

3.2.2 Asymptotic to order 1

This section is devoted to the computation of an asymptotic expansion of V
up to order one: this enables us to compute ṽ and ∂ξV (0) as function of h̃, ξ
and ε, α, β, δ up to order one. We can then insert the resulting expressions
in (67): dropping small term, we find a shallow water model for arbitrary
topography.

We first prove that

λ c

∫ h

0

J(∂ξ X)−1s = λ ch̃(∂ξ x)−1s + δθR c
h̃2

2J
(∂ξ x)−1(∂xs) s + O(ε2θ2

R).

Using the iterative scheme described in the previous section, we find after an
integration on (ξ, h) and up to order one:

∂ξ(JV ) + λ cJ(∂ξ x)−1s(h − ξ) = J

∫ h

ξ

β
(
Γ(~V (0)) − ∂tV

(0) − ~V (0).∇~ξ
V (0)

)

− δM∇ξ p(0) + δθRcJ(∂ξ x)−1(tr(∂xs)Id + ∂xs)s

∫ h

ξ

z dz

+ εθRJtr(∂xs)ξ(∂ξV )(0) + 2εθRJ(∂ξ x)−1(∂xs)(∂ξ x) V (0)

+ 2εθRJ(∂ξ x)−1(∂xs)(∂ξ x)∂ξ(ξV
(0))

+O
(
ε2θ2

R + β(β + δ + εθR) + δ(α + εθR)
)
. (68)
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Setting ξ = 0 in (68), one obtains an expansion for ∂ξV (0):

J∂ξV (0) + λ ch̃(∂ξ x)−1s = δ P1 + βλ P2 + P3, (69)

with Pi defined by

P1 = θR c(∂ξ x)−1 (∂xs) s
h̃2

2J
− J M

(
∇ξ(ch − κH)h −∇ξ c

h2

2

)

P2 = Jc(∂ξ x)−1sht

h2

2
− λc∇ξ.(Jc(∂ξ x)−1s)

h5

120
+ λc∇ξ.(Jch(∂ξ x)−1s)

h4

120

− Jλc2(∂ξ x)−1
(
(∂2

ξξx).(∂ξ x)−1s.(∂ξ x)−1s + θR(st Hb s)s
)2h5

15

−λcJ(∂ξ x)−1s.∇ξ(ch(∂ξ x)−1s)
5h4

24
+ λcJ(∂ξ x)−1s.∇ξ(c(∂ξ x)−1s)

3h5

40
.

P3 =O
(
ε2θ2

R + β(β + δ + εθR) + δ(α + εθR)
)
, (70)

Let us now compute an asymptotic expansion for h̃ṽ up to order one.

Integrating twice equation (68) on ∂ξV , we can prove that

∫ h

0

JV + λ cJ(∂ξ x)−1s
h3

3
= δQ1 + βλQ2 + Q3, (71)

with Qi given by

Q1 = θR cJ(∂ξ x)−1(∂xs) s
h4

4
− θR cJ(∂ξ x)−1(∂xs) s

5h4

12

+ θRJc(∂ξ x)−1
(
tr(∂xs)Id + (∂xs)

)
s
5h4

24
− θRcJtr(∂xs)(∂ξ x)−1s

h4

12

− J M
(
∇ξ(ch − κH)

h3

3
−∇ξ c

5h4

24

)
,

Q2 = cJ(∂ξ x)−1sht

5h4

24

− Jλ c2(∂ξ x)
(
(∂2

ξξx).(∂ξ x)−1s.(∂ξ x)−1s + θR(stHbs)s
)2h7

35

−λ cJ(∂ξ x)−1s.∇ξ(ch∂ξ x−1s)
11h6

120
+ λ cJ(∂ξ x)−1s.∇ξ(c(∂ξ x)−1s)

29h7

840

+ λ c∇ξ.(Jch(∂ξ x)−1s)(∂ξ x)−1s
h6

60
− λ c∇ξ.(Jc(∂ξ x)−1s)(∂ξ x)−1s

3h7

840
,

Q3 =O
(
ε2θ2

R + β(β + δ + εθR) + δ(α + εθR)
)
. (72)
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Moreover, it is easily seen that we can deduce h̃ṽ from
∫ h

0
JV dξ with the

equation:

h̃ṽ =

∫ h

0

JV − εθR

∫ h

0

tr(∂xs)ξV
(0) + O

(
εθR(β + δ + ǫθR)

)
. (73)

Finally we have

λ cJ(∂ξ x)−1s
h3

3
= λ c(∂ξ x)−1s

h̃3

3J
2 + δθR c tr(∂xs)(∂ξ x)−1s

h̃4

2J
2 + O(ε2θ2

R).

(74)

Using equations (71), (73) and (74), one finds an expansion for h̃ṽ up to

order one as function of h̃, ξ and (ε, α, δβ). Similarly, equation (69) gives
an expansion of ∂ξV (0) up to order one: thus we can eliminate ∂ξV (0) from
equation (67) to obtain a shallow water model. We shall see later that there
are different ways of eliminating ∂ξV (0) which gives a family of models. More
precisely, from (71), (73), (74) and (69), we define R1 and R2 the terms of
order one such that

J∂ξV (0) =−λ ch̃(∂ξ x)−1s− R1(h̃, ξ)

+O
(
ε2θ2

R + β(β + δ + εθR) + δ(α + εθR)
)
,

h̃ṽ =λ c
h̃3

3J
2 (∂ξ x)−1s − R2(h̃, ξ)

+O
(
ε2θ2

R + β(β + δ + εθR) + δ(α + εθR)
)
, (75)

From (75), we compute an expansion of ∂ξV (0) up to order one involving

the average quantities h̃, ṽ, the variable ξ and the parameters α, β, δ, ε:

−J∂ξV (0) =−3J
2

h̃
ṽ + R1(h̃, ξ) − 3J

2

h̃2
R2(h̃, ξ)

+O
(
ε2θ2

R + β(β + δ + εθR) + δ(α + εθR)
)
, (76)

Inserting (76) into (67), one finds
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∂th̃ +∇ξ.(h̃ṽ) = 0,

∂t(h̃ṽ) +
6

5
∇ξ.(h̃ṽ ⊗ ṽ) +

δ

β
JM∇ξ (c

h̃2

2J
) − κ

δ

β
h̃M∇ξH =

− 1

β

(
λ ch̃(∂ξ x)−1s +

3J
2

h̃
ṽ
)

+ T1 + R, (77)

with

R = O
( 1

β

(
ε2θ2

R + δ(α + εθR

)
+ β + δ + εθR

)
.

The function T1 depends on ξ and h̃ and reads:

T1 =
δ

β
T (1)

1 + λ2T (2)
1 ,

with

T (1)
1 =

(M

8
∇ξ c +

3

4
c(∂ξ x)−1(∂xs) s− 5

8
c(∂ξ x)−1(∂xs)s −

c

2
tr(∂xs)(∂ξ x)−1s

) h̃2

J

T (2)
1 = c(∂ξ x)−1s.∇ξ(c(∂ξ x)−1s)

h̃5

35J
4 − c(∂ξ x)−1s.∇ξ(c

h̃

J
(∂ξ x)−1s)

h̃4

15J
4

+
(
∇ξ.(c

h̃3

J
3 (∂ξ x)−1s)

h̃2

24J
2 + ∇ξ.(ch̃(∂ξx)−1s)

h̃4

120J
4

)
c(∂ξ x)−1s

−∇ξ.(Jc(∂ξ x)−1s)
h̃5

420J
5 c(∂ξ x)−1s

− 6

35
c2(∂ξ x)−1

(
∂2

ξξx.(∂ξ x)−1s.(∂ξ x)−1s + θR(st Hb s)s
) h̃5

J
4 . (78)

We easily see that provided that the dimensionless numbers Re, F, κ are of
order one, the high order terms are of order O(ε) and it is negligible in the
scaling limit ε ≪ 1. Then dropping these high order terms, one finds a
shallow water model for h̃, h̃ṽ in a closed form. Furthermore, we clearly see
that the conclusion of the expansion remains true if we only suppose that

α, β, δ, εθR ≪ 1 and
ε2θ2

R

β
, δ

β
α, δ

β
εθR ≪ 1. As a consequence, the model re-

mains is not only valid for Reynolds and Froude numbers of order one but
also for Re,F → ∞ as ε → 0 provided that we choose a suitable dependence
of Re,F with respect to ε.
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This formulation has the advantage of being independent of the parametriza-
tion of the bottom surface S but it is quite hard to work with that for-
mulation. In order to carry out numerical simulations, we have to specify
curvilinear coordinates. In the sequel, we are going to choose particular
parametrizations of the bottom surface S. Moreover, we shall be more pre-
cise on the asymptotic expansion of the mean curvature of the free surface
H with respect to ε, ξ and h̃,Hb: this will be done in the next section for a
particular parametrization.

4 Shallow water models for particular para-

metrizations

In this section, we parametrize the bottom surface with two systems of co-
ordinates: the ”steepest descent” curvilinear coordinates and the classical
orthonormal coordinates. We write the shallow water equations in this frame-
work for n-dimensional flows (n = 2 or n = 3) which gives (n−1)-dimensional
shallow water equations.

4.1 Shallow water equations in the steepest descent

parametrization

In what follows, we describe the ”steepest descent” curvilinear coordinates
and write the shallow water equations in that setting. First, we define θ, φ
such that the normal n to the surface S is given by (see part 2.1):

n =



− ∇x z√

1 + ‖∇x z‖2

1√
1 + ‖∇x z‖2


 ⇐⇒ n =




sin(θ) cos(φ)
sin(θ) sin(φ)

cos(θ)


 . (79)

Here θ represents the local inclination of the bottom surface. We are going
to use the ”steepest descent” curvilinear coordinates ξ1, ξ2 so that we have

∂x

∂ξ1

= cos(θ) cos(φ),
∂x

∂ξ2

= − sin(φ),

∂y

∂ξ1
= cos(θ) sin(φ),

∂y

∂ξ2
= cos(φ).

or equivalently
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∂ξ x =

(
cos(θ) cos(φ) − sin(φ)
cos(θ) sin(φ) cos(φ)

)
.

This system of coordinates is uniquely defined provided that a ”steepest
descent” direction exists: this condition is satisfied if s 6= 0. This direction is
at the intersection of the tangent plane to the bottom surface and the plane
spanned by the normal to the surface and the gravity vector: we shall see later
that it is the principal direction where the fluid flows. As a consequence of
that definition, we see that this system of coordinates is designed for gravity
driven flows but is not relevant for fluids driven by other external forces. In
that system of coordinates, the rescaled quantities J, M associated to the
change of reference frame are particularly simple. It is easily proved that

J = 1, M = Id, c(∂ξ x)−1 s = − sin(θ) e1,

with e1 = (1, 0)t.

Let us now compute an asymptotic expansion for the rescaled curvature of
the free surface. Using lemma 2, the rescaled unitary normal ~N to the free

surface reads ~N =
~n

‖~n‖ with

~n =

(−s − ε(Id − sst)(∂ξx)−t∇ξh

c − ε
(
c(∂ξx)−1s

)t∇ξh

)
+ O

(
ε2θR

)
. (80)

Then the rescaled mean curvature is given by

(n − 1)H=divx

(
(sε(Id − sst)(∂ξx)−t∇ξh)/‖~n‖

)
,

= θRtr
(
(∂ξx)−1∂ξs

)
+ εtr

(
(∂ξx)−1∂ξ

(
(∂ξx)∇ξh

))
+ O(ε2). (81)

As a consequence, the expansion of H with respect to ε is given by

H = θR Hb +
ε

n − 1

(
∆ξ h̃ + θR∇ξh̃.Vθ,φ

)
+ O(ε2), (82)

with Vθ,φ =
(
cos(θ) sin(2φ)∂2 φ − tan(θ)∂1 θ,− ∂1φ

cos(θ)

)t
.

Here, θR Hb represents the mean curvature of the bottom surface. At this
stage, two situations occur. Either θR = O(1): in that case the mean curva-
ture of the free surface is, up to order one, given by the mean curvature of
the bottom surface:

27



H = −1

2

( ∂θ

∂ξ1
+ sin(θ)

∂φ

∂ξ2

)
+ O(ε).

In that particular case, the shallow water equations (77) have the more ex-
plicit form:

∂th̃ +∇ξ.(h̃ṽ) = 0,

∂t(h̃ṽ) +∇ξ.
(6

5
h̃ṽ ⊗ ṽ − λ2 sin2(θ)h̃5

75
e1 ⊗ e1

)
+

δ

2β
∇ξ(cos(θ)h̃2) =

−κδθR

2β
h̃∇ξ.(∂1θ + sin(θ)∂2φ) +

1

β

(
λh̃ sin(θ) e1 −

3ṽ

h̃

)

+
δ

β
h̃2 sin(θ)

(
−θR

2
(∂1θ + sin(θ)∂2φ) + θR−1

8
∂1φ

−1
8
(∂2θ − θR sin(θ)∂1φ)

)

− 6

35
λ2h̃5 sin2(θ)

(
(θR − 1) tan(θ)∂1θ

cos(θ)φ1

)

− 3

175
λ2h̃5 sin(θ) cos(θ)∂1θ e1. (83)

If we restrict our attention to a 2-dimensional flow for the Navier Stokes
system and θR = 1, we easily get the one dimensional shallow water model

∂th̃ + ∂ξ(h̃ṽ) = 0,

∂t(h̃ṽ) + ∂ξ

(6

5
h̃ṽ2 − λ2 sin2(θ)h̃5

75
+

δ cos(θ)h̃2

2β

)
+ κ

δ

β
h̃∂2

ξξ θ =

1

β

(
λh̃ sin(θ) − 3ṽ

h̃

)
−
( δ

2β
+

3λ2h̃3

175
cos(θ)

)
sin(θ)∂ξθ. (84)

Here the ξ variable is the classical curvilinear coordinate. We clearly see that
no contribution including third order derivatives of h̃ appears in the capil-
lary term. In that case, the capillary effects are essentially supported by the
curvature of the bottom surface which is assumed to be not small: capillarity
is not dispersive in that case and acts as a classical friction or damping term
−κ h̃∇ξ Hb, depending on the mean curvature sign of the bottom surface.

In order to recover the classical ”dispersive” capillary term involving third
order derivatives of h̃, let us assume that the curvature of the bottom is
small: more precisely we consider θR = εθ̃R. In this particular case, we find:
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H = ε θ̃R Hb +
ε

n − 1
∆ξ h̃ + O(ε2). (85)

Then, the contribution of the capillarity term in (77) is negligible if κ = O(1):
we only see the influence of the capillary terms provided that εκ = O(1).
Denote κ̃ = εκ, the capillary term in (77) reads:

−κ
δ

β
h∇ξH = −κ̃

δ

β
h̃∇ξ

(
θ̃R Hb +

1

n − 1
∆ξ h̃

)
+ O(ε). (86)

In the case of shallow water flows over a flat and horizontal bottom, we
clearly recover the classical form of the capillary term −κ̃ δ

β
h̃∇∆ h̃ found in

the literature: see [3, 4] for a mathematical analysis of shallow water models
with this kind of capillary term and references therein.

4.2 Shallow water equation in orthogonal coordinates

In the literature, the shallow water equations or lubrication model over vary-
ing topographies are usually written using orthogonal curvilinear coordinates.
In order to compare our results with several shallow water equations obtained
previously [9, 10], we write the shallow water equations using the orthogonal
coordinates. In that setting, the basis vectors of the tangent plane to the
bottom surface are directed along the directions of maximal and minimal
curvatures.

Denote mi = ‖∂ x(ξ)
∂ξi

‖ and hi = mi(1 − εθR kiξ) where ki is the mean
curvature of the bottom in the direction ξi. In order to simplify the discus-
sion, let us choose an orthogonal system so that mi = 1. Then, if we denote
n =

(
sin(θ) cos(φ), sin(θ) cos(φ), cos(θ)

)
, we easily establish that

M = Id, J = 1, c(∂ξ x)−1s = − sin(θ)

(
cos(φ)
sin(φ)

)
= − sin(θ)ι, (87)

where ι = (cos(φ), sin(φ))t. In this particular case, the shallow water equa-
tions (77) have the more explicit form:
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∂th̃ +∇ξ.(h̃ṽ) = 0,

∂t(h̃ṽ) +∇ξ.
(6

5
h̃ṽ ⊗ ṽ

)
+

δ

2β
∇ξ(cos(θ)h̃2) = κ

δ

β
h̃∇ξ.H +

1

β

(
λh̃ sin(θ) ι − 3ṽ

h̃

)

+
δ

β
(
1

4
∇ξ cos(θ) + θR sin(θ)(k1 + k2)ι −

3

2
θR sin(θ)diag(k1, k2)ι)

h̃2

2

+ λ2 sin2(θ)(ι.∇ξ h̃)ι
h̃4

15

−λ2
(4

5
sin(θ)(ι.∇ξ)(ι sin(θ)) −∇ξ.(ι sin(θ))ι sin(θ)

) h̃5

21
. (88)

An important remark is that the direction ι and the derivatives in that
direction are important to describe the first terms describing the influence of
a varying topography: this is precisely the steepest descent direction which is
at the intersection of the tangent plane to the surface and the plane spanned
by the gravity vector ~g and the normal to the bottom surface ~n. The other
quantities depends only on θ the angle between the normal to the bottom
surface with the vertical and the principal curvatures of the surface. All
these quantities are intrinsic and do not depend on the parametrization of
the surface.

4.3 A family of models

In the sequel, we show that we can obtain a family of models from (77) which
has the same accuracy. In order to simplify the discussion, we work with the
shallow water equations in the steepest descent coordinates (77). First let us
note that inserting the equation

ṽ = λ sin(θ)
h̃2

3
e1 + O(εθR + β + δ),
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into the momentum equation of (83) yields, with the same accuracy and for
any constant A,

∂t(h̃ṽ) + ∇ξ.
(
(
6

5
+ A)h̃ṽ ⊗ ṽ − (

1

75
+

A

9
)λ2 sin2(θ)h̃5e1 ⊗ e1

)

+
δ

β
∇ξ(

cos(θ)h̃2

2
)−κ

δ

β
h∇ξH =

1

β

((
λh̃ sin(θ)e1 −

3ṽ

h̃

))

+
δ

β
h̃2 sin(θ)

(
−θR

2
(∂1θ + sin(θ)∂2φ) + θR−1

8
∂1φ

−1
8
(∂2θ − θR sin(θ)∂1φ)

)

− 6

35
λ2h̃5 sin2(θ)

(
(θR − 1) tan(θ)∂1θ

cos(θ)φ1

)

− 3

175
λ2h̃5 sin(θ) cos(θ)∂1θ e1. (89)

Using the same argument and the equation

h̃ṽ = λ sin(θ)
h̃3

3
e1 − R2(h̃, ξ) + O

(
ε2θ2

R + β(β + δ + εθR) + δ(α + εθR)
)
,

one can split the term 1
β
(λh̃ sin(θ)e1 − 3ev

eh
) in two parts for any constant B

1

β
(λh̃ sin(θ)e1 −

3ṽ

h̃
) =

B

β
(λh̃ sin(θ)e1 −

3ṽ

h̃
) +

1 − B

β
(λh̃ sin(θ)e1 −

3ṽ

h̃
)

=
B

β
(λh̃ sin(θ)e1 −

3ṽ

h̃
) +

3(1 − B)

βh̃2
R2(h̃, ξ) + O(ε). (90)

The last term is order 0 since R2 is order one. If we choose B = 0, we can
completely eliminate the stiff source term from (83) but in that case, we

lose the information that ṽ = λ sin(θ)
eh2

3
e1 + (h.o.t) and the fact that this

asymptotic analysis was done in a quasistationnary regime.

4.4 Lubrication models

In this section, we propose a family of models with a single equation on
the variable h̃, the velocity ṽ being determined by h̃. This kind of mod-
els are frequently used in lubrication theory, such as the Benney’s equation
or Kuramoto-Sivashinky equation obtained in the limit of small amplitude
waves (see [5, 6] for more details). The validity of these equations is limited
because of the limit on the amplitude of waves. Nevertheless, there are quite
useful as a first approximation of the shallow water equations and more man-
ageable from the numerical point of view. In the literature, they are directly
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derived from the Navier Stokes equations or appear as a by product of the
derivation of shallow water equations: see [11], [5, 6] for more details. We
proceed here in a similar way to obtain a hierarchy of models for the fluid
height h.

The first model equation valid up to order zero in ε is obtained by inserting
the equation

ṽ = −λ cos(θ)
h̃2

3
(∂ξ x)−1s + O(εθR + β + δ),

into the ”exact” mass conservation law

∂t h̃ + ∇ξ.(h̃ṽ) = 0.

Dropping small terms, one finds the conservation law

∂t h̃ −∇ξ.(λ cos(θ)
h̃3

3
(∂ξ x)−1s) = 0. (91)

In the ”steepest descent” coordinates system, equation (91) reads:

∂t h̃ + ∂1(λ sin(θ)
h̃3

3
) = 0. (92)

An important remark is that, in the steepest descent coordinates, the flow is
almost one dimensional: this makes easier the numerical simulations of the
flow in that setting. The equation obtained is nothing but a Burgers equation
which exhibits singularities in finite time: in order to get a more accurate
model, let us replace ṽ by its asymptotic expansion up to order one. For the
sake of simplicity, we write the model in the ”steepest descent” coordinates
system. From the momentum equation (77) and equation (91), we deduce
the order one lubrication model

∂th̃ +∇ξ.(h̃ṽ) = 0, with

h̃ṽ =
λh̃3

3
sin(θ)e1 +

δh̃4

3
sin(θ)




θR − 1

8
∂1θ −

θR

2
(∂1θ + sin(θ)∂2φ)

θR

8
sin(θ)∂1φ − 1

8
∂2θ




− δh̃2

6
∇ξ(cos(θ)h̃2) + κδ

h̃3

3
∇ξH− 2βλ2h̃7

35
sin2(θ)

(
(θR − 1) tan(θ)∂1θ

cos(θ)∂1φ

)

+
2βλ2h̃6

15

(2h̃

21
sin(2θ)∂1θ + sin2(θ)∂1h̃

)
e1. (93)
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It is hard to see the effects of the curvature of the topography and those of
the capillarity in that case: let us consider two cases where the lubrication
equation has a simpler form. In the one dimensional case and for θR = 1,
one finds the lubrication model

∂th̃ + ∂ξ

(
λh̃3 sin(θ)

3
− κδh̃3

3
∂2

ξξθ +
4λ2h̃7

315
sin(2θ)∂ξθ

)
=

∂ξ

( h̃3

3

(
δ cos(θ) − 2βλ2

5
sin2(θ)h̃3

)
∂ξh̃
)
. (94)

In that case and up to order one, the main effects of capillarity and the
curvature of the topography is to introduce a corrective term in the advec-
tion term of the equation. The dissipative term is completely similar to the
dissipative term in the Benney’s equation obtained for flat bottom.

When the curvature of the bottom surface is order O(ε), let θR = εθ̃R, the
lubrication model reads

∂th̃ + ∂1

(λh̃3

3
sin(θ)

)
= δ∇ξ.

( h̃4

8
∇ξ

(
cos(θ)

)
+

h̃3

3
cos(θ)∇ξh̃

)

− κ̃δ∇ξ.
( h̃3

3
∇ξ

(
θ̃R Hb +

1

2
∆ξh̃

))

− 2βλ2

15
∂1

(
2h̃7

21
sin(2θ)∂1θ + sin2(θ)h̃6∂1h̃ +

6h̃7

35
sin2(θ) tan(θ)∂1θ

)

+
2βλ2

35
∂2

(
h̃7 sin2(θ) cos(θ)∂1φ

)
. (95)

In that case the dispersive effects of the capillarity appears through the term

−κ̃δ∇ξ.
( h̃3

6
∇ξ ∆ξh̃

)
(96)

5 Conclusion

In that paper, we have investigated systematically the slow motion of a rel-
atively thin layer of fluid over an arbitrary topography. From Navier Stokes
equations to Benney equation, there is a wide range of models for shallow
water flows. Numerical simulations of the full Navier Stokes equations is
cumbersome owing to the presence of the free boundary and does not give
a good insight into the dynamic of the fluid layer. On the other hand, Ben-
ney’s equation is an over simplified model for this kind of flow, only valid for
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small amplitude wave and it exhibits finite time singularities. We achieved
a subsequent level of modeling by considering the time evolution of h and
the local flow rate hv =

∫ h

0
v: this yields the shallow water equations. We

have obtained an evolution system for h and hv =
∫ h

0
V where V is the

component of the fluid speed parallel to the bottom surface in a closed form
through an asymptotic expansion, with respect to ε, of solutions of the full
Navier Stokes equations.

The existing models were derived from the full Navier Stokes equations
only for small curvatures of the bottom surface [5, 6], [9, 10] or for a vanishing
viscosity [1, 2] with or without capillarity. In this paper, the viscosity is not
negligible and the curvature of the bottom is not necessarily small: the layer
of fluid is entirely a boundary layer and in a first approximation, the velocity
profile is parabolic provided that the bed slope never vanishes. Under an
appropriate scaling of the equations, we justify (formally) the classical mod-
eling assumptions made to derive shallow water equations: the dynamic of
the layer is close to a local equilibrium (here a Nusselt flow) and the pressure
is hydrostatic. We derived a family of new shallow water systems all equiva-
lent and accurate to order one in ε, the film parameter.

We followed the approach of Bouchut et al. in order to give models inde-
pendently of the parametrization of the bottom surface. The shallow water
system obtained is written in conservative form: it has a hyperbolic part, and
a stiff source term involving viscosity effects and gravity forces. The terms
in front of κ represent the capillary effects whereas the terms in front of θR

are due to the curvature of the bottom surface and take into account cen-
trifugal forces. The term involving h̃4, h̃5 are correction terms coming from
the interaction between the global boundary layer and the model of friction
at the bottom (here a no-slip condition). The stiff source term relaxes the
system to the quasistationnary Nusselt type flow.

As a first approximation the local average speed points in the steepest de-
scent direction. Hence it is natural to write the shallow water equations for a
particular parametrization of the bottom surface so called ”steepest descent”
curvilinear coordinates. As a by product of the analysis, we obtain lubrica-
tion models valid for arbitrary topographies. Depending on the characteristic
size of the bottom curvature, the capillary terms have different effects: in the
case of a large curvature, the capillary force has the form −κ∇ξ Hb h: it is
a classical forcing term linear in h: it has no dispersive effects. In order
to recover the classical dispersive effects of the capillary forces, one has to

34



assume that the bottom curvature is small: this yields capillary terms with
third spatial derivative of h.

To finish let us draw some perspectives for this work: first we need to
make some numerical simulations on the models obtained and compare the
results to the one obtained with a direct simulation of the full Navier Stokes
equations. The approach proposed in this paper is only formal: it seems im-
portant that this approach should be justified mathematically even in simple
situations: for that purpose, uniform estimates with respect to ε on the so-
lutions of the Navier Stokes equations in the neighboorhood of Nusselt flows
are needed. Finally a mathematical analysis on the nonlinear waves of the
shallow water equations obtained in this paper should give a good insight of
the slow dynamic of shallow water flows.
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