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Steady state solutions for a lubrication multi-fluid
flow

Laurent Chupin1 & Bérénice Grec12

Abstract - In this paper, we describe possible solutions for a stationary flow of two super-

posed fluids between two close surfaces in relative motion. Physically, this study is within

the lubrication framework, in which it is of interest to predict the relative positions of the

lubricant and the air in the device. Mathematically, we observe that this problem corre-

sponds to finding the interface between the two fluids, and we prove that it is equivalent

to solve some polynomial equation.

We solve this equation using an original method of polynomial resolution. First, we

check that our results are consistent with previous work. Next, we use this solution to

answer some physically relevant questions related to the lubrication setting. For instance,

we obtain theoretical and numerical results enabling to predict the apparition of a full film

with respect to physical parameters (fluxes, shear velocity, . . . ). In particular, we present

a figure giving the number of stationary solutions depending on the physical parameters.

Moreover, in the last part, we give some indications for a better understanding of the

multi-fluid case.

AMS Classification: 26C10, 65H04, 76A20, 76B10, 76D08, 76T10, 76T30.

Key words: Cavitation, Lubrication, Multi-fluid, Saturation, Steady state, Stokes equa-

tions, Reynolds equation.

1 Introduction

Many works are devoted to the study of free boundary problems for hydrodynamic flows

in the thin film setting, and in particular to the cavitation phenomenon. This phenomenon

corresponds to the occurrence of air in a lubricant flow, and is of particular interest for

industrial applications, since it is essential to have a full film of lubricant in order to

avoid damage to the lubricated surfaces. The understanding and possible prediction of

cavitation is very challenging. One of the main questions is to foresee the experimental

conditions preventing the cavitation to happen (geometry of the lubricated device, injec-

tion velocity, shear velocity...).

Several mathematical models have been developed to take into account the cavita-

tion [5, 6]. One approach is to consider the mixture air-lubricant as a two-fluid flow.

Although early studies of multi-fluid problems in the lubrication context assumed that

the boundary between the two immiscible fluids was known [2, 10], the real problem is

a free boundary one. More generally, it consists in solving the Navier-Stokes or Stokes
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2

equations for two fluids of different viscosities. The corresponding model has been stu-

died from a mathematical point of view in general domains [7]. Further, this model has

been investigated in the thin film setting under the assumption that the two fluids are

separated by the graph of a function. In [8], Paoli justified the asymptotic model in

thin domains and obtained a limit problem coupling a Buckley-Leverett equation and

the Reynolds law. More recently, in [3], Bayada, Martin, Vázquez studied this system

with a non-zero shear velocity, which is realistic for most lubrication problems due to

the difference of velocities between the surrounding surfaces. Their numerical results

indicated the existence of stationary solutions; in fact, the time scale of lubrication ap-

plications is large enough to neglect the transient state and consider stationary solutions.

However, the solutions in [3] seem to be in contradiction with the non-miscibility

property proved in [7, Lemma 2.3]. In fact, these stationary solutions have (vertical)

interfaces between the two fluids along which the flow velocity is not tangent. Note that

the non-miscibility property, satisfied in the general setting, can be proved in the thin

film approximation in the case of regular enough interfaces. For less regular interfaces,

although we can not prove rigorously this property, it seems physically relevant to keep

this property as an additional assumption. In this paper, we are thus concerned with

solutions satisfying this non-miscibility property. We propose a new formulation for this

model, which consists in a polynomial equation on the function describing the interface

separating the two fluids. On the one hand, we recover the numerical results obtained

in [3], which treated the case of a small viscosity ratio between the two fluids. On the

other hand, we obtain theoretical and numerical results for the existence and uniqueness

of solutions for more general data. Moreover, these results allow us to predict the sat-

uration phenomenon, namely to predict for which parameters a full film of lubricant is

formed, which avoids cavitation.

This paper is organized as follows: in section 2, we present the two-fluid model of [7]

and recall the non-miscibility property. Then we derive formally the limit model in a thin

domain. Assuming that the two fluids are separated by the graph of a function, the model

is written as a polynomial equation (see equation (2.8)). Section 3 is devoted to existence

and uniqueness results, in the no-shear case (subsection 3.1) and in the lubrication context

(subsection 3.2). More precisely, in subsection 3.2.1, we show how our model allows us to

recover the previous results of [3]. Subsection 3.2.2 is concerned with the theoretical study

of the small viscosity ratio case, which is a case of physical interest (e.g. lubricant/air

case). In subsection 3.2.3, we obtain by theoretical and numerical methods saturation

criteria, which allow to prevent cavitation. Finally, in section 4 we tackle the multi-fluid

case. In particular we show, using the example of a three-layers flow, how to generalize the

approach developed in section 3. In Appendix, we recall some useful results on Sturm’s

theorem, which is a key step for the resolution of our polynomial equation.
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3

2 Governing equations

2.1 Two-fluid model in a thin domain

We consider the flow of two different fluids of viscosities η1, η2 in a Lipschitz domain

Ω ⊂ R
2. The flow is described by the Stokes equations, coupling the velocity v = (u,w)

and the pressure p. The global viscosity η : Ω → {η1, η2} satisfies a transport equation.

The existence of a solution to this system is proved in [7]. In the stationary setting, the

model is written:





div(2η Dv) = ∇p,

div v = 0,

v · ∇η = 0,

v
∣∣
∂Ω

given,

η
∣∣
∂Ωin

given,

(2.1)

where ∂Ωin denotes the part of the boundary ∂Ω where the velocity v is incoming. It

is underlined in [7, Lemma 2.1] that system (2.1) in its unsteady form implies that the

velocity field v and the stress tensor 2η Dv−pId are continuous. Furthermore, the results

in [7] are obtained under the following assumption:

Ω1 = η−1(η1) and Ω2 = η−1(η2) are Lipschitz domains. (2.2)

To our knowledge, no existence or uniqueness results has been proved for the stationary

equations. However, some results of [7] can easily be adapted for system (2.1). Thus,

Lemma 2.3 of [7] becomes:

Property 2.1 For any solution (v, p, η) of (2.1)-(2.2), the velocity field v is continuous

and tangent to the discontinuity lines of η.

Since we are interested here in lubrication applications, we consider two fluids flowing

between two close surfaces in relative motion. The domain is assumed to be thin by

depeding on a small parameter ε and is written

Ωε =
{
(x, z) ∈ R

2, 0 < x < 1, 0 < z < εh(x)
}

,

where the function h describes the gap between the two surfaces. Moreover, the relative

motion of the two surfaces is modeled by a shear velocity s at the bottom of the domain.
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4

Formally, system (2.1) tends to the following system when ε tends to zero:





∂z(η∂zu) = ∂xp, ∂zp = 0,

∂x

(∫ h

0

u dz

)
= 0,

∂x

(∫ h

0

ηu dz

)
= 0,

u(x, 0) = s, u(x, h(x)) = 0,

∫ h(0)

0

u dz given,

∫ h(0)

0

ηu dz given.

(2.3)

The rigorous asymptotic study when ε tends to zero has been done in [8]. Clearly, solu-

tions of (2.3) are not solutions of (2.1) for two reasons:

• When passing to the limit ε → 0, we loose the x-derivatives in the div(2η D·)-operator.

• Nothing proves that solutions of (2.3) satisfy property 2.1, except in some special cases

(see remark 2.7).

However, we can prove the following proposition.

Proposition 2.2 For any solution (u, p, η) of (2.3) satisfying property 2.1, there exists

v = (u,w) satisfying in a weak sense the following equations of (2.1):





divv = 0,

v · ∇η = 0,

v(x, 0) = (s, 0), v(x, h(x)) = 0.

Proof For any solution (u, p, η) of (2.3), let us introduce w = −∂x

(∫ z

0
u
)
, and define

v = (u,w).

• We have div v = ∂xu + ∂zw = 0.

• It is also clear that w(x, 0) = 0, and using that ∂x

(∫ h

0
u dz

)
= 0, we compute

w(x, h(x)) = 0.

• Moreover, let Γ = Ω1 ∩ Ω2, and n the normal vector to Γ. For any ϕ ∈ C∞
0 (Ω), since

div v = 0, we have

−

∫

Ω

v · ∇η ϕ =

∫

Ω

ηu∂xϕ + ηw∂zϕ.

Using that Ω = Ω1 ∪ Γ ∪ Ω2 and the divergence theorem, we get

−

∫

Ω

v · ∇η ϕ = η1

∫

Ω1

(
u∂xϕ + w∂zϕ

)
+ η2

∫

Ω2

(
u∂xϕ + w∂zϕ

)
,

= (η1 − η2)

∫

Γ

v · n = 0.
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5

Therefore, if we find a solution of (2.3) satisfying property 2.1, then it is almost a solution

of (2.1) (except for the Stokes equation, due to the thin film approximation).

2.2 Fluid interface described as a graph

As in previous works in the lubrication context [8, 3], we are looking for solutions of (2.3)

so that the two fluids are separated by the graph of a function h1 (see Figure 1 (a)).

s

η = η1

η = η2

h

h1

s

η = η1

η = η2

h

h1

Figure 1. Flow domain and fluid interface: function h1 (a) continuous and (b) discontinuous

Remark 2.3 If the function h1 is not continuous, we consider the curve separating the

two fluids which is the graph of h1 almost everywhere, see Figure 1 (b).

As a convention, we denote by η1 the viscosity of the bottom fluid and η2 the viscosity

of the top fluid. In system (2.3), we can decompose

∂x

(∫ h

0

u dz

)
= ∂x

(∫ h1

0

u dz

)
+ ∂x

(∫ h

h1

u dz

)
,

∂x

(∫ h

0

ηu dz

)
= η1 ∂x

(∫ h1

0

u dz

)
+ η2 ∂x

(∫ h

h1

u dz

)
.

Consequently, since η1 6= η2, system (2.3) is equivalent to the following system:




∂z(η∂zu) = ∂xp, ∂zp = 0,

∂x

(∫ h1

0

u dz

)
= 0,

∂x

(∫ h

h1

u dz

)
= 0,

u(x, 0) = s, u(x, h(x)) = 0,
∫ h1

0

u dz = Q1,

∫ h

h1

u dz = Q2,

(2.4)

where Q1 and Q2 correspond respectively to the flux of each fluid. They can be determined

from the given data of system (2.3). Integrating the first equation of (2.4) with respect

to the vertical variable on the interval [0, z], and using the continuity of the stress η∂zu,

we obtain

η∂zu = z∂xp − A,

where the constant A = −η∂zu|z=0 corresponds physically to the stress on the bottom

of the domain. For each subdomain, we can deduce the value of ∂zu with respect to the
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6

pressure p:

∂zu =





z

η1
∂xp −

A

η1
z ∈ [0, h1),

z

η2
∂xp −

A

η2
z ∈ (h1, h].

Integrating again with respect to the vertical variable z (and using the velocity continuity

and the boundary condition u(x, 0) = s), we obtain

u =





z2

2η1
∂xp −

A

η1
z + s z ∈ [0, h1),

h2
1

2η1
∂xp −

A

η1
h1 + s +

z2 − h2
1

2η2
∂xp −

A

η2
(z − h1) z ∈ (h1, h].

(2.5)

The constant A can be determined from the boundary condition u(x, h(x)) = 0:

A =
q

2ℓ
∂xp +

s

ℓ
,

with

ℓ =
h1

η1
+

h − h1

η2
, q =

h2
1

η1
+

h2 − h2
1

η2
.

Recall that the two fluxes Q1 =
∫ h1

0
u and Q2 =

∫ h

h1

u are given data in system (2.4).

From the previous expression of the velocity u we deduce a relation between these fluxes

and the pressure p:




12η1ℓQ1 = h2
1

(
2ℓh1 − 3q

)
∂xp + 6h1(2η1ℓ − h1)s,

12η2ℓQ2 = (h − h1)
2
(
3q − 2ℓh1 − 4ℓh

)
∂xp + 6(h − h1)

2s.
(2.6)

Remark 2.4 When h1 = h we recover the case of a single fluid of viscosity η1 and a

flux Q1:

Q1 = −
h3

12η1
∂xp +

h

2
s.

The conservation of this flux corresponds to the classical Reynolds equation. In the same

way, when h1 = 0, we obtain the case of a single fluid of viscosity η2 and a flux Q2.

Remark 2.5 Note that in the case of one single fluid, the choice of the boundary con-

ditions is arbitrary. Indeed, it follows immediately from the Reynolds equation (see re-

mark 2.4) that the boundary conditions we chose (imposing the flux, and one condition

on the pressure)

p(L) = 0, Q1 given,

are equivalent to pressure boundary conditions

p(L) = 0, p(0) given,

since the flux Q1 can be computed from p(0) and p(L). However, it is not clear that

this equivalence still holds in the two-fluid case, since relation (2.7) between ∂xp and Q1
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7

depends on the unknown h1. We chose to impose

p(L) = 0, Q1 given and Q2 given,

which allows us to write equation (2.8) on h1 as a function of the given data. If we had

chosen pressure boundary conditions, we would not have known how to write this relation.

Using the Sturm sequences (see Appendix, page 27 and example 5.1), we prove that there

exists no height h1 ∈ (0, h) such that 2ℓh1 − 3q = 0. In other words, we can express ∂xp

from the first equation of system (2.6):

∂xp =
12η1ℓQ1 − 6h1(2η1ℓ − h1)s

h2
1(2ℓh1 − 3q)

. (2.7)

Using this expression in the second equation of system (2.6) we obtain a polynomial

equation for the unknown h1:

(h−h1)
2
(
2η1ℓQ1−h1(2η1ℓ−h1)s

)(
3q−2ℓh1−4ℓh

)
= h2

1

(
2η2ℓQ2−(h−h1)

2s
)(

2ℓh1−3q
)
.

(2.8)

Recall that in this equation, the quantity h models the height of the domain (it depends

on the coordinate x so that the solution h1 depends on x too), the data η1, Q1, η2 and Q2

respectively correspond to the viscosity and the flux of each fluid, and the values ℓ and q

are respectively linear and quadratic with respect to the unknown h1:

ℓ =
h1

η1
+

h − h1

η2
, q =

h2
1

η1
+

h2 − h2
1

η2
.

Solving system (2.4) is then equivalent to finding a function h1 defined on [0, L] and sa-

tisfying equation (2.8). Next, the pressure is explicitly given, up to an additive constant,

from equation (2.7). The additive constant is computed using the boundary condition

p(L) = 0. Finally, the velocity is computed from equation (2.5).

Remark 2.6 For all x ∈ (0, 1), the velocity profiles u(x, ·) are piecewise parabolic. More

precisely u(x, ·) is parabolic on [0, h1(x)) and on (h1(x), h(x)].

From a mathematical point of view, system (2.4) can admit solutions without physical

sense. In fact, we will see that there exists solutions of equation (2.8) (and consequently

solutions of system (2.4)) for which property 2.1 is not satisfied.

For instance, if the function h1, solution of (2.8), is discontinuous with respect to the

variable x, then, by virtue of the previous remark, the corresponding horizontal velocity u

is discontinuous too. Such discontinuous functions h1 can correspond to the case where

there exists, for all x ∈ [0, L], more than one solution to equation (2.8): we can choose

for each x a different solution, and “jump” from one solution to the other.

In the following, we only consider solutions of system (2.4) which satisfy property 2.1. In

that case, the function h1 is necessarily continuous (and it is not a restrictive assumption

in definition 2.8).

Remark 2.7 It is important to note that if the function h1 is not only continuous but

more regular, for instance if h1 ∈ C1(0, L), then property 2.1 is automatically satisfied
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for all solution (u, p, η) of system (2.4). In fact, let w = −
∫ z

0
∂xu. For x ∈ (0, L) we

compute

w(x, h1(x)) = −

∫ h1(x)

0

∂xu(x, z) dz = −∂x

(∫ h1(x)

0

u(x, z) dz

)
+ h′

1(x)u(x, h1(x)).

Since any solution of (2.4) satisfies ∂x

(∫ h1(x)

0
u(x, z) dz

)
= 0, we obtain the equality

w(x, h1(x)) − h′
1(x)u(x, h1(x)) = 0, i.e. v · n = (u,w) · t(−h′

1(x), 1) = 0.

Definition 2.8 We call interface a function h1 ∈ C(0, L) such that 0 ≤ h1 ≤ h and such

that there exists a solution (u, p, η) of system (2.4) satisfying

u ∈ H1(Ω), p ∈ L2(Ω) and η(x, z) =

{
η1 for z < h1(x),

η2 for z > h1(x).

In these terms, the goal of this paper is to study the existence and uniqueness of such

interfaces.

Remark 2.9 It seems that the method proposed in this paper cannot be extended to the

three-dimensional case, namely when the domain Ω is a bounded open subset of R
3. In

fact, in the three-dimensional case, the quantity
∫ h(x)

0
u(x, z) dz is not constant but only

satisfies divx

(∫ h(x)

0
u(x, z) dz

)
= 0.

3 Existence and uniqueness problems

3.1 No-shear case

In this subsection, we are interested in the no-shear case, which models for example a

two-fluid flow in a channel. Moreover, the results in this simplified case give us a first

understanding of equation (2.8).

Let s = 0. Equality (2.8) is then written (since ℓ > 0 for 0 < h1 < h)

η1Q1(h − h1)
2(3q − 2ℓh1 − 4ℓh) = η2Q2h

2
1(2ℓh1 − 3q).

Consequently an interface h1 is a solution of the problem if and only if it satisfies 0 <

h1 < h and P0(h1/h) = 0, where the polynomial P0 has degree 4 and is defined by

P0(X) = (1 − X)2(3q̃ − 2ℓ̃X − 4ℓ̃) − MQ̃X2(2ℓ̃X − 3q̃),

with Q̃ = Q2/Q1, M = η2/η1, ℓ̃ = 1 + (M − 1)X and q̃ = 1 + (M − 1)X2.

This formulation highlights the dimensionless quantities governing the behavior of the

flow. Note that in this particular case without shear, it is determined by the ratio Q2/Q1,

whereas we will see that in the shear case each of the two fluxes Q1 and Q2 can be chosen

independently.

Remark 3.1 In the limit case M = 0, the polynomial P0 is very simple: P0 = −(1−X)4.

The only solution (X = 1) corresponds to a full film of the fluid of viscosity η1 ≫ η2.
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9

In the same way, when M = +∞, the only solution is again a full film of the fluid of

greatest viscosity.

3.1.1 Theoretical results

In fact, the polynomial P0 is simple enough to prove existence and uniqueness of a

solution for Q̃ > 0, that is when the two fluxes have the same sign.

The existence of a solution is clear since P0(0) = −1 < 0 and P0(1) = M2Q̃ > 0. The

polynomial P0 having degree 4, there can be one or three real solutions. Using the Sturm

sequences (see Appendix), we compute:

P
(1)
0 (0) = 4(1 − M), P

(1)
0 (1) = 4MQ̃(M − 1),

P
(2)
0 (0) =

3M(1 + Q̃)

2(MQ̃ + 1)
, P

(2)
0 (1) = −

3M2Q̃(1 + Q̃)

2(MQ̃ + 1)
.

We deduce the following sign table:

P
(0)
0 P

(1)
0 P

(2)
0 P

(3)
0 P

(4)
0

X = 0 − + + ? ?

X = 1 + − − ? ?

which is enough to exclude the three solutions case (in fact, we must have 4− 1 or 3− 0

sign changes to obtain three solutions). We have proved the following result:

Proposition 3.2 Let s = 0. If Q1 and Q2 have the same sign, there exists a unique

interface h1 solution of equation (2.8).

In other words, for any positive fluxes Q1 and Q2 and for any viscosities η1 and η2 there

is always a unique two-fluid stationary solution with one fluid above the other with no

shear velocity.

3.1.2 Numerical validation

In order to validate these theoretical results, we developed an algorithm with Scilab and

performed numerical simulations. This algorithm plots the (possibly several) interface

solutions h1 with respect to the geometry h and the following physical parameters: shear

velocity s, fluxes of each fluids Q1, Q2 and viscosities of each fluids η1, η2. Moreover,

for each interface solution h1, we can plot the pressure p and a horizontal velocity pro-

file u(x, ·) for some x ∈ [0, L].

We present the no-shear case results (with s = 0) in the case of an oil/water flow. The

two viscosities approximatively correspond to the oil viscosity η1 = 10−2 Pa · s and wa-

ter viscosity η2 = 10−3 Pa · s. The ratio M is then given by M = 0.1. The two fluxes
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10

take the same values: Q1 = Q2 = 1 m2 · s−1. The domain geometry is described by its

length L = 1 and by its height h(x) = 4
(
x − 1

2

)2
+ 1

2 . It corresponds to a so-called

convergent-divergent domain.

Figure 2 (a) represents the form of the domain (that is the function h, thin line) and the

position of the interface (function h1, thick line). On Figure 2 (b), we plot the pressure

profile. Figure 3 corresponds to two different horizontal velocity profiles u(x, ·) for x = 0

and x = L/2. The velocity is greater in the less viscous fluid.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0.0

0.5
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15
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Figure 2. (a) Interface position and (b) pressure profile
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Figure 3. Horizontal velocity profile at (a) x = 0 and (b) x = L/2.

3.2 Lubrication context

In this part we are interested in lubrication applications. We thus take into account the

relative motion of the two surrounding surfaces, via the non zero velocity s 6= 0. In this

case, the reference flux is given by sh and it is natural to introduce the following non

dimensional quantities:

Q̃1 =
Q1

sh
, Q̃2 =

Q2

sh
, X =

h1

h
.

Note that the non dimensional fluxes Q̃1 and Q̃2 depend on the variable x through the

function h.
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With these new notations, there exists an interface h1 = Xh solution to (2.8) if and only

if there exists X ∈ (0, 1) root of the following polynomial of degree 6:

P(X) =
(
1 − X

)2(
2ℓ̃Q̃1 − X(2ℓ̃ − MX)

)(
3q̃ − 2ℓ̃X − 4ℓ̃

)

− MX2
(
2ℓ̃Q̃2 − (1 − X)2

)(
2ℓ̃X − 3q̃

)
,

(3.1)

where

M =
η2

η1
, ℓ̃ = 1 + (M − 1)X and q̃ = 1 + (M − 1)X2.

The idea is to apply Sturm’s theorem (see Appendix) to count the number of roots of P

in (0, 1). Since P(0) = −2Q̃1 and P(1) = 2M3Q̃2, as in the no-shear case, there exists

at least one solution (provided Q̃1 and Q̃2 are both positive). However, there are too

many parameters (Q̃1, Q̃2 and M) to compute a general sign table manually. Therefore

we consider some special cases of physical interest, corresponding to some values of the

parameters.

• First, in subsection 3.2.1, we set the parameters as in [3] and show how to recover their

numerical results, which do not satisfy the non-miscibility property (see property 2.1).

• From the point of view of lubrication applications, there are two relevant particular

cases. In the first, see subsection 3.2.2, we consider a small viscosity ratio (for example,

for an air/water mixture, the viscosity ratio is about 10−3), and obtain theoretical

existence results.

• The second important application is the understanding of the cavitation phenomenon

(subsection 3.2.3). To prevent the cavitation to happen, we prove that the parameter

Q̃2 has to be zero, and we obtain theoretical and numerical results enabling to predict

the apparition of a full film with respect to the two other parameters Q̃1 and M .

3.2.1 Comparison with previous works

Since we use an original approach, it is first interesting to compare our results to other

well-known results in the same physical setting.

For instance, in [3], the authors analyze the asymptotic system corresponding to a thin

film flow with two different fluids. As stated in the introduction of this article, their

approach differs from ours in the sense that they obtain solutions which do not respect

property (2.1). Nevertheless, we will see that our results can be compared to their results.

Also note that in [3] the authors compare their model to the Elrod-Adams one, which is

the reference model in tribology, as cavitation phenomena occur [5, 1]. Roughly speak-

ing, the Elrod-Adams model is obtained when the ratio M (which is denoted ε in the

reference [3]) tends to 0.

More precisely, one of their results is given by Figure 4. On this figure, they plotted dif-

ferent interfaces3 h1 depending on the value of the ratio M (curves ε = 10−1, 10−2 and

10−3). Moreover, they plotted the interface corresponding to the Elrod-Adams model.

All the other parameters (the height h, the total flux Q1 + Q2, the saturation at the

3 Notice that they plot the ratio h1(x)/h(x), which is thus in the interval (0, 1). In order to
compare our results with theirs, we plot in this part the same rescaled interfaces h1/h.
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B−L/R, ε=10−1

B−L/R, ε=10−2

B−L/R, ε=10−3

Elrod−Adams

Figure 4. Results obtained in [3]: rescaled interfaces for different viscosity ratios.

entrance h1(0) and the shear velocity s) are given in [3]. We simply note that the fluxes Q1

and Q2 are not directly given but can be deduced from the ratio M , the total flux Q1+Q2

and the value of the saturation at the entrance of the domain h1(0). We use the same

parameters with our model:

h(x) = 4

(
x −

1

2

)2

+
1

2
, s = 1

and Q1, Q2 such that Q1 + Q2 = 0.58 and h1(0) = 0.38 × h(0). Note that the values of

the two fluxes may thus depend on M .

As far as the pressure is concerned, let us emphasize that they impose in [3] two

boundary conditions on the pressure : p(0) = 0 and p(L) = 0, and therefore the system

they solve is somehow overdetermined (see remark 2.5). In our case, only the right-hand

side condition is imposed : p(L) = 0. Therefore, it is not straightforward to compare the

values of the pressure.

• In the case M = 10−1, we compute the respective values of the fluxes Q1 = 0.5 and

Q2 = 0.08. We plot the function h1/h on Figure 5 (a). The profile of the interface

obtained is similar to the one obtained in [3] (see Fig. 4 in the case ε = 10−1).

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
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0.4
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0.7

0.8

0.9

1.0

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
−0.5

0.0

0.5

1.0

1.5

2.0

2.5

Figure 5. (a) Interface and (b) pressure obtained with our method, with the same
parameters as in Figure 4 for M = 10−1.
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• In the case M = 10−3 we have Q1 = 0.575 and Q2 = 0.005. In this case, depending

on the height h(x), and thus depending on x, there may be one or several interface

solutions h1(x). All solutions are plotted for each x with a thick light line on Figure 6.

It is important to note that there is no (continuous) interface on (0, L). However, if

we allow discontinuous solutions (that is if we violate property 2.1) then a possible

solution is drawn with a thin dark line in figure 6. In this case, we recover the solution

proposed by [3] with M = 10−3 (see Fig. 4 in the case ε = 10−3).

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
−0.10

−0.05

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

Figure 6. (a) Interface and (b) pressure obtained with our method, with the same
parameters as in Figure 4 for M = 10−3.

In order to compare the pressures in a better way with the model of Bayada, Martin,

Vàzquez [3], the authors provided us new results when relaxing the Dirichlet boundary

condition on p at x = 0. If they impose Neumann condition on p, they obtained for the

pressure the curves showed on Figure 7. The red curve (with p(0) 6= 0) corresponds

to the Buckley-Leverett/Reynolds system, and the blue one (with p(0) = 0) to the

Elrod-Adams model. As far as the interface is concerned, this new boundary condition

does not influence the results of Figure 4. We can see that our results presented on

Figure 6 (b) are quite similar to this curve, both qualitatively and quantitatively.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Figure 7. Case M = 10−3: pressure for the model of [3] with p(0) 6= 0 and for the
Elrod-Adams model (with p(0) = 0).
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3.2.2 Small viscosity ratio

Note that for M = 0 the polynomial P defined by equation (3.1), is very simple:

P(X) = 2(1 − X)5(X − Q̃1).

This polynomial admits exactly two real solutions. In terms of dimensional quantities,

we recall that this equation is solved for any x ∈ [0, L], and that we look for 0 ≤ h1 ≤ h.

Two cases can occur:

• either x ∈ [0, L] is such that h(x) ≤ Q1/s: then there exists only one solution h1(x)

such that h1(x) ∈ [0, h(x)], it is the full film solution h1(x) = h(x);

• either we are interested in x ∈ [0, L] such that h(x) > Q1/s and there is in addition to

the full film solution a constant solution h1(x) = Q1/s.

Figure 8 corresponds to such a case. To obtain this figure, we imposed the shear velocity

s = 1, the two fluxes Q1 = 0.7 and Q2 = 0.1 and the height h(x) = 4(x − 1
2 )2 + 1

2 so

to have both cases: one solution (for small height h(x)) and the case with two solutions

(for large height h(x)).

Physically the viscosity ratio M is not equal to zero, but there are many interesting cases

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
−2

0

2

4

6

8

10

12

14

Figure 8. Shear case (s = 1) with zero viscosity ratio M = 0: (a) possible fluid interfaces in
the domain and (b) pressure.

for which M is very small (e.g. lubricant/air). We show that such cases are a perturbation

of the case M = 0. More precisely, the implicit function theorem gives the behavior of

the roots X = 1 and X = Q̃1 for small values of the viscosity ratio M . For instance, near

the point X = Q̃1, M = 0 we have (in the case Q̃1 6= 1):

P(X) = 0 ⇐⇒ X = Q̃1 −
Q̃2

1

(
(3 + Q̃1)(2Q̃2 − 1 − Q̃1) − (1 − Q̃1)

2
)

2(1 − Q̃1)3
M + O(M2).

This means that the root X = Q̃1 corresponding to the case M = 0 is little changed

when M is small.

Near the point X = 1, M = 0 the implicit function theorem cannot be directly applied

since ∂XP(1)|M=0 = 0. However, we can introduce the variable Y = (1−X)5, and apply
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the implicit function theorem to the function g(Y,M) = P(X). We obtain

P(X) = 0 ⇐⇒ X = 1 + 5

√
Q̃2

1 − Q̃1

M3/5 + O(M4/5).

Note that for Q̃1 < 1 (and M > 0), this root becomes greater than 1 and is not considered

in our situation. Conversely, for Q̃1 > 1 this root has to be taken into account.

We have numerically observed this situation. Taking the same parameters as previously

(s = 1, Q1 = 0.7, Q2 = 0.1) and M = 10−3 (whereas M = 0 in Figure 8), we obtain

Figure 9. We clearly observe the first solution h1 ≈ Q1/s on the left and on the right

(i.e. for big heights). The second solution h1 = h disappeared for these heights, since

it became greater than h, whereas for smaller heights, we observe this solution h1 ≈ h,

with h1 < h.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0.0

0.5

1.0

1.5

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
−0.5

0.0

0.5

1.0

1.5

2.0

2.5

Figure 9. Shear case (s = 1) with small viscosity ratio M = 10−3: (a) possible fluid interface
in the domain and (b) pressure.

3.2.3 Can the two-fluid model describe saturation phenomenon?

Roughly speaking, we say that there is saturation in the flow when there exists a zone in

which there is only one fluid, typically when a lubricant fills the gap between two surfaces

in relative motion. More precisely, we introduce the following mathematical definition of

the saturation phenomenon:

Definition 3.3 We say that an interface h1 ∈ C(0, L) saturates if

∃(x1, x2) ∈ [0, L]2, x1 < x2, h1(x1) < h(x1) and h1(x2) = h(x2).

From this definition, we easily prove that if the interface is more regular1 then the

saturation can be locally characterized:

1 Let us denote by C1

pm the set of piecewise C1-functions. For such a function f , the quantity f ′

g

denotes its left derivative.
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Proposition 3.4 An interface h1 ∈ C1
pm(0, L) saturates if and only if

∃x2 ∈ [0, L], h1(x2) = h(x2) and h1
′
g(x2) > h′(x2).

Such a point x2 is called a saturation point for the interface h1.

Figure 10 shows an example of a saturation point x2 associated to an interface h1. From a

s

η = η1

η = η2

h

h1

x2

Figure 10. Saturating interface

physical point of view, it seems natural that in such a situation the flux Q2, corresponding

to the flux of the top fluid, should be equal to 0. This fact can be mathematically proved

in a simple way using the conservation of the flux Q2: if the interface h1 saturates then

there exists x2 ∈ [0, L] such that h1(x2) = h(x2). Consequently Q2 =

∫ h(x2)

h1(x2)

u dz = 0.

Property 3.5 If the interface h1 saturates then the flux of the top fluid vanishes: Q2 = 0.

Hence, in a saturation case, the polynomial P is written

P|Q2=0(X) = 2ℓ̃(1 − X)2
(
(Q̃1 − X)(3q̃ − 2ℓ̃X − 4ℓ̃) − 2MX2

)
.

Theoretical results

Among the roots of the polynomial P|Q2=0 there is the obvious solution X = 1 (i.e.

h1 = h). Since ℓ does not vanish for X ∈ [0, 1], we look for the other roots introducing

R(X, Q̃1) = (Q̃1 − X)(3q̃ − 2ℓ̃X − 4ℓ̃) − 2MX2.

Let us come back to the dimensional variables in order to use proposition 3.4. Assuming

that there exists an interface h1 ∈ C1
pm(0, L) (not equal to h), the function h1 satisfies,

for all x ∈ [0, L], the relation

R

(
h1(x)

h(x)
,

Q1

sh(x)

)
= 0. (3.2)

Taking the left-derivative with respect to x, we obtain

s
(
h1

′
g(x)h(x) − h′

g(x)h1(x)
)
∂1R

(
h1(x)

h(x)
,

Q1

sh(x)

)
− Q1h

′
g(x)∂2R

(
h1(x)

h(x)
,

Q1

sh(x)

)
= 0.

ha
l-0

04
61

63
5,

 v
er

si
on

 1
 - 

5 
M

ar
 2

01
0



17

From proposition 3.4 and due to the fact that Q1, s, h(x) are positive, if the interface h1

saturates at a point x2 ∈ [0, L] then

R(1, Q̃1) = 0 and h′(x2)
∂2R(1, Q̃1)

∂1R(1, Q̃1)
> 0, with Q̃1 =

Q1

sh(x2)
. (3.3)

In fact R(1, Q̃1) = 2M2(1 − 3Q̃1) vanishes for Q̃1 = 1/3. Moreover, we get

∂2R(1, 1/3)

∂1R(1, 1/3)
= −9.

We deduce the following necessary condition for saturation:

Proposition 3.6 If an interface h1 ∈ C1
pm(0, L) saturates at x2 ∈ [0, L] then

h(x2) =
3Q1

s
and h′(x2) < 0. (3.4)

This proposition 3.6 indicates that in order to have a saturation phenomenon the domain

must be convergent, through the condition h′(x2) < 0.

Remark 3.7 In the same way it is possible to define the notion of “desaturation”, when

an interface appears in a full film. Using the same methods as those used to prove propo-

sition 3.6, we can prove that an interface can desaturate only if there exists a point

x2 ∈ [0, L] for which the height h(x2) is imposed, namely h(x2) =
3Q1

s
, and for which

the domain is locally divergent: h′(x2) > 0.

Proposition 3.6 contains an important assumption: the function h1 must be an interface,

that is the function h1 must be defined on [0, L]. In particular, condition (3.4) does

not imply that h1 is an interface in the sense of definition 2.8. Nevertheless, following

the proof of proposition 3.6, condition (3.4) implies that ∂1R(1, Q̃1) 6= 0 (see (3.3)).

Consequently, the implicit function theorem proves that there exists a function f defined

in a neighborhood of x2 such that

R

(
h1

h(x)
,

Q1

sh(x)

)
= 0 ⇐⇒ h1 = f(x).

In other words, condition (3.4) implies that there exists locally (with respect to the

spatial variable x) a saturating interface.

Proposition 3.8 If there exists x2 ∈ [0, L] such that (3.4) holds then there exists ε > 0

and an interface h1 ∈ C1
pm(x2 − ε, x2 + ε) which saturates at x2.

Propositions 3.6 and 3.8 give a characterization of (local) saturation. It is important to

notice that such characterization does not depend on the value of the viscosity ratio M .

It depends only on the geometry, that is on the height h.

Moreover, the implicit function theorem is valid as long as ∂1R(X, Q̃1) 6= 0. To see how

“global” the result of proposition 3.8 is, we must find the common zeros of the two
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polynomials ∂1R and R. On Figure 11, we plot the set of values (M, Q̃1) for which the

discriminant of ∂1R and R vanishes.

0,30,250,150,1

0,326

0,2

0,332

0,05

0,33

0,328

0

M

eQ1

Figure 11. The set of values (M, eQ1) for which the discriminant of ∂1R and R vanishes.

From this Figure 11 we can emphasize two fundamental results. First, for M large enough

(that is M & 0.3), the discriminant of the two polynomials ∂1R and R does not vanish.

Consequently, for M & 0.3 the result of proposition 3.8 holds globally:

Proposition 3.9 Let 0.3 . M ≤ 1. There exists an interface h1 ∈ C1
pm(0, L) which

saturates at x2 ∈ [0, L] if and only if the condition (3.4) holds.

The second remark we can deduce from Figure 11 is that for M . 0.3, a saturated

solution can exist only locally, that is only on a small interval around the saturation

point x2. Such a situation will be highlighted by numerical results in the sequel.

Numerical validation

The results of the previous propositions (3.6, 3.8 and 3.9) can be observed numerically.

We conducted three numerical tests in which there exists a point x2 ∈ [0, L] satisfying

condition (3.4). With the following data

L = 1, h(x) = 4

(
x −

1

2

)2

+
1

2
, s = 1 and Q1 =

1

3
,

the probable saturation point x2 is given by x2 = 1
2

(
1 − 1√

2

)
≈ 0.146.

• On Figure 12, we use a viscosity ratio M = 0.6 & 0.3 so that proposition 3.9 ensures

the existence of an interface on [0, L] which saturates at x2. We plot on Figure 12 the

full film solution h1 = h and the saturated solution.

• Next, we give an example with M = 0.2 . 0.3. We observe that the saturated solution

can be defined as a function only near the saturation point x2. Consequently, in this

configuration, there exists only one interface on [0, L]: it is the full film solution h1 = h.

In this case, there is no solution existing on the whole interval [0, L], except for the

full film solution, thus it is not of interest to plot the pressure.

• For lower values of M , we can observe another phenomenon. On Figure 14, we use
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Figure 12. (a) the full film solution and the saturated solution obtained for M = 0.6 and (b)
the pressure corresponding to the saturated solution

Figure 13. The full film solution and the other solutions h1(x) of the polynomial
equation (3.2) obtained for M = 0.2.

M = 0.005. In such a case, there always exists the full film solution. There exists also

a locally saturated solution (but as for the case M = 0.2 this solution does not allow

to define an interface on [0, L]). Moreover, there exists a third solution, which is global

(that is corresponds to an interface on [0, L]) but which does not saturate.

As in the previous case, apart from the full film solution, there is no saturated

solution existing globally, and we do not plot any pressure.

We will see in the next paragraph that it is possible to predict the configuration

(corresponding to Figure 13 or corresponding to Figure 14) according to the value of

the flux Q1 and the viscosity ratio M .

Prediction

In this part, we assume that Q̃2 = 0. There may therefore be a saturation phenomenon

for Q̃1 = 1/3. If we want to understand the configurations of the number of solution(s)

near a saturation point, we must predict the solution(s) for Q̃1 6= 1/3.

In this situation, we have two independent parameters: M and Q̃1. We will plot a map

of the number of solutions depending on M and Q̃1. To obtain such a map, we use the

Sturm sequences (see Appendix 5): from the polynomial R, we define a sequence R(i),
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Figure 14. The full film solution and the other solutions h1(x) of the polynomial
equation (3.2) obtained for M = 0.005.

i = 0..3. In practice, the number of roots n(M, Q̃1) of the polynomial R between 0 and 1

is given by

n(M, Q̃1) =

∣∣− a0a1 − a1a2 − a2a3 + b0b1 + b1b2 + b2b3

∣∣
2

,

where ai =
R(i)(0)

|R(i)(0)|
and bi =

R(i)(1)

|R(i)(1)|
.

Using the software Maple, we obtain the map given by Figure 15. We find that the

value Q̃1 = 1/3 plays a particular role. Thus, when the height h(x) varies so that Q̃1

crosses the value 1/3, the behavior is given by the previous figures: Figure 12 for large

values of M , and Figures 13 and 14 for small values of M . Note that the small white

zone (corresponding to the 3 roots case) can be observe on Figures 13 and 14 near

the saturation point x ≈ 0.146: for such x, there exists three possible positions of the

interface.

4 More layers cases

The previous study only concerns the two layers configuration, that is the case where

two fluids are superposed one above the other. In fact, the same theoretical study can

be applied for more than two fluids, the only additional difficulty coming from the size

of the polynomial systems to solve. We briefly present in this section the case with three

layers and its main application in lubrication context: the existence or not of so called

“fingers” in a stationary configuration (see Figure 16).

4.1 Three-fluid model in a thin domain

For such a situation, we respectively denote by η1, η2 and η3 the viscosities of the three

fluids (upwards), and we denote by h1 the interface between the two bottom fluids, by h2

the interface between the two top fluids. Starting from the Stokes equations (2.1), we

deduce as for the two layers case (see equation 2.5) the following horizontal velocity
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◦: 3 roots

•: 2 roots

•: 1 root

•: 0 root

Figure 15. Number of roots in [0, 1[ of the polynomial R for different values of M and eQ1.

s

η = η1

η = η2

η = η3

h

h1

h2

s

η = η1

η = η2

h

h1

h2

Figure 16. Three layers: (a) usual superposed fluids and (b) possible finger

profile:

u =





z2

2η1
∂xp −

A

η1
z + s z ∈ [0, h1),

h2
1

2η1
∂xp −

A

η1
h1 + s +

z2 − h2
1

2η2
∂xp −

A

η2
(z − h1) z ∈ [h1, h2],

h2
1

2η1
∂xp −

A

η1
h1 + s +

h2
2 − h2

1

2η2
∂xp −

A

η2
(h2 − h1)

+
z2 − h2

2

2η3
∂xp −

A

η3
(z − h2) z ∈ (h2, h].

(4.1)

The constant A can be determined from the boundary condition u(x, h(x)) = 0:

A =
q

2ℓ
∂xp +

s

ℓ
,

with

ℓ =
h1

η1
+

h2 − h1

η2
+

h − h2

η3
, q =

h2
1

η1
+

h2
2 − h2

1

η2
+

h2 − h2
2

η3
.
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The fluxes are naturally denoted by Q1 =
∫ h1

0
u, Q2 =

∫ h2

h1

u and Q3 =
∫ h

h2

u, and we

deduce a system of three equations for the three unknowns ∂xp, h1 and h2. Clearly, when

h1 = h2 (or when h1 = 0 or h2 = h) we must recover the system corresponding to

the two layers case, that is system (2.6). We can write the system under the following

form (which simply corresponds to the integration with respect to the variable z of the

velocity u):




12η1ℓQ1 = h1 f1(∂xp, h1, h2),

12η2ℓQ2 = (h2 − h1) f2(∂xp, h1, h2),

12η3ℓQ3 = (h − h2) f3(∂xp, h1, h2),

(4.2)

with

f1(∂xp, h1, h2) = h1

(
2ℓh1 − 3q

)
∂xp + 6

(
2η1ℓ − h1

)
s,

f2(∂xp, h1, h2) =

{
(h2 − h1)

(
2ℓ(h2 + 2h1) − 3q + 6

η2

η1
h1h2(

1

η3
−

1

η2
)
)

+ 6
η2

η1η3
h1h(h1 − h)

}
∂xp + 6

(
(h2 − h1) + 2

η2

η3
(h − h2)

)
s,

f3(∂xp, h1, h2) =

{
(h2 − h1)

(
6
η3

η2

(
ℓ(h2 + h1) − q

)
+ 6

η3

η1
h1h2(

1

η3
−

1

η2
)
)

+ (h − h2)
(
2ℓ(h + 2h2) − 3q

)
+

6

η1
h1h(h1 − h)

}
∂xp + 6

(
h − h2

)
s.

In fact, each function fi is affine with respect to its first variable (that is ∂xp) and it is not

difficult to express ∂xp as a function of the two heights h1 and h2. Moreover, we observe

that the first equation of this system (4.2) is exactly the same as the first equation

of system (2.6) corresponding to the two-layers study. The expression of the pressure

derivative ∂xp can thus be given by equation (2.7). We then obtain a polynomial system

of two equations with two unknowns h1 and h2. Theoretically, it suffices to determine

the roots (h1, h2) of such a system and select those which satisfy 0 < h1 ≤ h2 < h. We

can then explicitly find the pressure (using system (4.2) and an expression of ∂xp with

respect to h1 and h2), and next the velocity using equation (4.1).

For system (4.2), there are many physical parameters: the three fluxes Q1, Q2 and Q3,

the shear velocity s, the three viscosities η1, η2 and η3, and the function defining the

height h. Using non-dimensionalization process, we can see that only some ratios are

important. Nevertheless the study of the general case seems rather tedious.

4.2 Finger configuration ?

The purpose of this subsection is to investigate whether there is a stationary solution

where the relative position of the fluids is given as in Figure 16 (b). Such a configura-

tion is called ”finger configuration” (see for instance [4, 9] in which they define such

configurations in a non stationary context). Observe that in this case, we clearly have

η3 = η1 and Q2 = 0.
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Necessary condition to have a finger configuration

To have a finger configuration, there must be a point x2 ∈ [0, L] (which corresponds

to the “tip of the finger”) for which h1(x2) = h2(x2), and such that h1(x1) < h2(x1)

for x1 < x2. This implies in particular that h′
1g(x2) < h′

2g(x2). In other words, the

solution h1 = h2 to the second equation of system (4.2) must be at least of order 2. In

mathematical terms, we deduce from the fact that Q2 = 0 that

∀x ∈ (0, 1), (h2(x) − h1(x))f2(∂xp(x), h1(x), h2(x)) = 0.

Taking the left-derivative of this relation with respect to x, evaluating it at x2 and using

that h′
1g(x2) 6= h′

2g(x2) whereas h1(x2) = h2(x2), we deduce that

f2(∂xp(x2), h1(x2), h2(x2)) = 0.

A simple calculation indicates that

f2(∂xp, h1, h1) =
h1 h

η1
∂xp − 2s.

We deduce that if there exists a finger then there exists x2 ∈ [0, L] and a solution

h1 ∈ (0, h) to the equation

h1(x2)h(x2) ∂xp(x2) = 2η1 s.

We easily deduce this first result about the existence of finger configuration (we will note

that s = 0 and ∂xp = 0 are incompatible with the other equations of system (4.2)):

Proposition 4.1 In the no-shear case (i.e. s = 0), there is no finger configuration.

More generally, we will see later (see proposition 4.2) that there is no finger configuration

if s is not large enough.

Assume that there exists a finger configuration in the shear case (s 6= 0). Consequently,

the second equation of system (4.2) is written h1 h ∂xp = 2η1 s. At point x2 ∈ [0, L] where

h1(x2) = h2(x2) the two other equations of system (4.2) are written




12η1ℓQ1 = h1 f1

(
2η1 s

h1 h
, h1, h1

)
,

12η1ℓQ3 = (h − h1) f3

(
2η1 s

h1 h
, h1, h1

)
.

(4.3)

With the expressions of f1 and f3, this system is written




12η1ℓQ1 = 2h1s(3h − h1),

12η1ℓQ3 = 2s(h − h1)
2

(
1 −

h

h1

)
.

As in the previous section, we introduce the dimensionless quantities Q̃1 = Q1

sh , Q̃3 = Q3

sh

and X = h1

h . The previous system is equivalent to the following one:
{

12Q̃1 = 2(3 − X)X,

12XQ̃3 = −2(1 − X)3.
(4.4)
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It is not difficult to observe that the first polynomial equation (of degree 2) admits a

solution X ∈ (0; 1) if and only if 0 < Q̃1 < 1
3 . The solution is then given by

X =
3 −

√
9 − 24Q̃1

2
.

Next, the second equation of (4.4) implies

Q̃3 = −
(1 − X)3

6X
.

Moreover, summing the two equations of system (4.4), we deduce that

6X(Q̃1 + Q̃3) = 3X − 1.

Using the physical variables, we obtain the following result

Proposition 4.2 If there exists a finger configuration then Q1 > 0, Q2 = 0, Q3 < 0 and

there exists x2 ∈ [0, L] such that

h(x2) >
3Q1

s
and Q3 = −

(√
9s h(x2) − 24Q1 −

√
s h(x2)

)3

24
(
3
√

s h(x2) −
√

9s h(x2) − 24Q1

) .

Moreover the height of the finger tip is explicitly given by

h1(x2) =
s h(x2)

2

3(s h(x2) − 2(Q1 + Q3))
.

Remark 4.3 (1) Note that the total flux can be positive or negative:

Q1 + Q3 ∈] −∞,
h(x2)s

3
[.

It is positive if and only if h(x2) < 27Q1

4s .

(2) In a sense, this proposition completes proposition (4.1): if the shear velocity s is

too small, then there is no finger configuration.

(3) As for the existence of a saturation point in the two layers case (see proposi-

tion 3.6), the necessary condition to have a finger configuration does not depend

on the viscosities of the fluids.

Sufficient condition to have a finger configuration

Proposition 4.2 gives some necessary conditions to have a finger configuration, more

precisely to have a point x2 such that h1(x2) = h2(x2). In order to obtain sufficient con-

ditions, we have to determine if there is some set of parameters for which there actually

exists a solution (h1, h2) such that for any 0 ≤ x < x2 (or at least in a neighborhood

of x2) we have h1(x) < h2(x). We assume that Q2 = 0, η3 = η1, 0 < Q̃1 < 1
3 and that Q̃3

is given with respect to Q̃1 by proposition 4.2. We then have only two independent pa-

rameters: the viscosity ratio M = η2

η1

and the non-dimensional flux of the bottom fluid Q̃1.
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From a theoretical point of view, we could apply the implicit function theorem to de-

termine if there is a solution x2 such that locally, the right condition on h1 and h2 is

satisfied. However, this study is quite complicated.

From a numerical point of view, we only observe a finger configuration for a “divergent”

domain. Such a case is represented on Figure 17, for Q1 = 0.2, Q3 = 0.05, h(x) =

0.9 + 0.2x, and the viscosity ratio M = η2/η1 = 0.4.

0.2 0.9

0.0

0.2

0.4

0.4

0.6

0.8

1.0

1.2

0.0 0.80.1 0.70.60.5 1.00.3

Interface

Figure 17. Possible finger for a divergent domain: the bottom solution h1 (light line) and the
top solution h2 (dark line)

For a “convergent” domain, the configuration observed in the previous case is reverted,

and corresponds to a “finger coming from the inside”. This is shown on Figure 18. This

figure is obtained for the same parameters Q1 = 0.2, Q3 = 0.05, M = 0.4 and the

following geometry: h(x) = 1.1 − 0.2x.

0.80.70.6

0.0

0.2

0.4

0.6

0.8

1.0

1.2

0.0 0.50.1 0.4 1.00.30.2 0.9

Interface

Figure 18. Possible solutions for a convergent domain: finger coming from the convergent
part, and a solution corresponding to an “open finger”

On Figure 18, we observe that there is a second couple (h1, h2) of solutions, but which

do not cross (there is no x2 such that h1(x2) = h2(x2), thus the finger is not “closed”).

In fact, for smaller h as those represented on this figure, this couple of solutions does not

exist anymore.

Remark 4.4 If we allow the jump between different solutions (of course, as in the case
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of two layers, this violates the non-miscibility condition given by property 2.1), then it is

possible to obtain an infinite number of different fingers.

Let us explain more precisely what happens. System (4.2) can be rewritten, extract-

ing ∂xp from the second equation and plugging it into the two others:
{

F1 (h1, h2) = 0,

F3 (h1, h2) = 0,

where the functions Fi are rational fractions depending on the ratios Q1/sh, Q3/sh,

η2/η1. It is of course equivalent to find roots of the numerators of the Fi, thus the system

to be solved is polynomial.

If we fix a value of the viscosity ratio M = η2/η1 and plot the resolvant of the two

polynomials for several values of Qi/sh, i = 1, 3, we obtain again necessary conditions on

Qi/sh for a finger configuration (i.e. for the existence of a finger tip at some x2 ∈ [0, L]).

Then, in order to know how the two solutions h1 and h2 behave locally around x2, and

thus to know whether there exists a finger for x < x2, we plot the values of X = h1/h

and Y = h2/h for which the two polynomials cancel. Figure 19 (a) corresponds to a value

of the Q̃i = Qi/sh for which there exists a mutual root X = Y : M = 0.2, Q̃1 = 0.2,

Q̃3 = −0.05. In Figure 19 (b), we plot a small perturbation of this case, namely a slightly

modified value of Qi/sh. This perturbation consists in decreasing slightly the values

of Qi/sh by multiplying them by 0.85, that is increasing the value of h (and thus shifting

to the left for a convergent geometry).

X
0 0,2 0,4 0,6 0,8 1,0

Y

0

0,2

0,4

0,6

0,8

1,0

X
0 0,2 0,4 0,6 0,8 1,0

Y

0

0,2

0,4

0,6

0,8

1,0

Figure 19. Values of X = h1/h (solid line) and Y = h2/h (dashed line) solutions for (a) some
Qi and (b) perturbed values of these Qi (×0.85)

Of course, we recover on Figure 19 (a) that there is a mutual root of the two polynomials

such that h1(x2) = h2(x2). A finger configuration exists if the mutual root of the two

polynomials moves above the diagonal (i.e. h1(x1) < h2(x1)) when decreasing h. We see

that this is not the case in Figure 19 (b).

Moreover, we observe that there exists another mutual root to the two polynomials,

but this root never crosses the diagonal, so there is no “tip” (h1 = h2) for this possible

finger. This second root is observed on Figure 18, and we already stated that the finger

could not be “closed”.
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X
0 0,2 0,4 0,6 0,8 1,0

Y

0

0,2

0,4

0,6

0,8

1,0

Figure 20. Values of X = h1/h (solid line) and Y = h2/h (dashed line) solutions for other
perturbed values of the Qi of Figure 19 (a) (×1.15)

Conversely, if we increase Q̃i, and thus decrease h and shift to the right for a convergent

geometry, we observe a solution satisfying X < Y , see Figure 20.

This last result indicates that it is possible to obtain “inclusions” as a stationary

solution. Such a situation is given on Figure 21 where the height is a classical convergent-

divergent domain h(x) = 1
2 (x − 1

2 )2 + 0.9, L = 1 and where the physical parameters are

given by Q1 = 0.2, Q3 = 0.05 and M = 0.4.

0.2 0.9

0.0

0.2

0.4

0.4

0.6

0.8

1.0

1.2

0.0 0.80.1 0.70.60.5 1.00.3

Interface

Figure 21. Possible stationary solutions for a convergent-divergent domain : “inclusion”

5 Appendix : Sturm sequences

Let P ∈ R[X] be a polynomial. Sturm’s theorem is a symbolic procedure to determine

the number of distinct real roots of P in a given interval.

First, we build the Sturm sequence as follows:

P(0) = P, P(1) = P ′ and for all k ∈ N,

P(k) = Q(k+1)P(k+1) − P(k+2) with deg(P(k+2)) < deg(P(k+1)).

In other terms, it consists in taking the opposite of the remainders of the successive

polynomial divisions. Since deg(P(k+1)) < deg(P(k)), the algorithm terminates with a

constant polynomial P(n).

Let V (x) be the number of sign changes (zeros are not counted) in the sequence P(0)(x),
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P(1)(x), ..., P(n)(x).

Sturm’s theorem states that for two real numbers a < b, the number of distinct roots in

the half-open interval (a, b] is |V (a) − V (b)|.

Example 5.1 Let h > 0 and 0 < M < 1 be given data. We are looking for the number

of roots in the interval [0, h] for the polynomial P of degree 2 defined by

P(h1) = 2ℓh1 − 3q with ℓ = h + (M − 1)h1, q = h2 + (M − 1)h2
1.

Using the Sturm procedure, we define the three following polynomials P(0) = P, P(1) = P ′

and P(2) = C (C is a constant and we see that its value does not matter here). We obtain

the following signs:

P(0)(0) = −3h2 < 0, P(0)(h) = −Mh2 < 0,

P(1)(0) = h > 0 and P(1)(h) = 2(2 − M)h > 0.

Next, we deduce the following sign table:

P(0)(h1) P(1)(h1) P(2)(h1)

h1 = 0 − + sgn(C)

h1 = h − + sgn(C)

Thus, whatever the sign of the constant C is, there is exactly the same number of signs

in the second row of this table that in the third. In conclusion, the polynomial P has no

root between 0 and h.
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