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FOKKER-PLANCK EQUATION IN BOUNDED DOMAIN

by Laurent CHUPIN

Abstract. — We study the existence and the uniqueness of a solution ϕ to
the linear Fokker-Planck equation −∆ϕ + div(ϕF) = f in a bounded domain
of Rd when F is a “confinement” vector field. This field acting for instance like the
inverse of the distance to the boundary. An illustration of the obtained results is
given within the framework of fluid mechanics and polymer flows.

Résumé. — On étudie l’existence et l’unicité de solution ϕ à l’équation de
Fokker-Planck linéaire −∆ϕ+div(ϕF) = f sur un domaine borné de Rd lorsque F
est un champ de vecteurs “confinant” comme par exemple l’inverse de la distance
au bord. Une illustration des résultats obtenus est donnée dans le cadre de la
mécanique des fluides et des écoulements de polymères.

1. Introduction

In this paper we are interested in the so called Fokker-Planck equation

(1.1) −∆ϕ+ div(ϕF) = f.

• In the simplest case (that is F = 0) this equation is known as the
Laplace equation (when f = 0) or as the Poisson equation (when
f 6= 0). The solutions of these equations are important in many
fields of science, notably the fields of electromagnetism, astronomy
and fluid dynamics, because they describe the behavior of electric,
gravitational and fluid potentials.
• More generally, the main reason of the physical interest of equa-

tion (1.1) comes from the fact that it can be put in conservative
form div(J) = f with J = −∇ϕ + ϕF. Thus it can be connected

Keywords: Fokker-Planck equation, Bounded domain, Stationary solution, Confinement,
Fluid mechanics, Polymer flows.
Math. classification: 35J25, 35Q35, 35R60, 76A05, 82D60.



218 Laurent CHUPIN

to a generalization to the Fick’s law J = −∇ϕ connecting diffu-
sion flux J and concentration ϕ in inhomogeneous environments,
see [9, 22].
• In the dynamical systems framework (see for instance [26]) the non-

stationary Fokker-Planck equation ∂tϕ = ε∆ϕ−div(ϕF) is usually
introduced. In this case, the function ϕ represents the smooth prob-
ability density of a population driven by F and subject to ε-small
diffusion in the following sense. The term ϕF is a vector field rep-
resenting the population ϕ moving with the flow of F, and so the
divergence of this vector field represents a thinning out of the popu-
lation due to F, which therefore contributes negatively to the local
growth rate of the population, ∂tϕ. This explains the drive term.
Meanwhile the term ε∆ϕ represents ε-small diffusion, and con-
tributes positively to the growth rate. The study which is presented
here concerns the existence and the uniqueness of a steady-state so-
lution. We note that the theory is closely related to applications,
because the steady-state ϕ is an ε-smoothing of the measure on the
attractors of the flow of F (see [26]) and therefore in numerical and
physical experiments ϕ can be used to model the data with ε-error.
• According to the contexts, the vector field F can take various forms.

In particular it may occur that physically realistic assumptions do
not make it possible to conclude only with the already known re-
sults. We will give such a caricatural example in the last part.

Besides the problems of the existence and the uniqueness, the question
which interests us is to know which boundary conditions are needed to
ensure the existence and the uniqueness of a solution of equation (1.1) in
the bounded case.

We will see that this depends on F. When F is regular enough, i.e. does
not diverge too quickly at the boundary, data on ϕ at the boundary of the
domain enable to ensure the uniqueness of the solution. We remind of this
result at the beginning (in particular because the proof resembles ours). We
also say that when the domain does not have boundary, for instance if we
are interested in the space Rd or on a compact variety without boundary,
uniqueness is ensured by imposing the average of ϕ.

We prove that, in the bounded case, when F is not so regular, the “good”
condition to ensure uniqueness is still to impose the average of ϕ, and that
in that case, the unique solution vanishes on the boundary.
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1.1. Some known results on equation (1.1)

Except for the case where F = 0, a particularly simple case corresponds
to F = ∇V (V is assumed to be regular and differentiable) and f = 0. In
this case ϕ = exp(V ) is a solution of (1.1) in the bounded case as well as
in the compact case or in the unbounded case. In the same way, we can
easily prove that the case F = ∇V + G admits the solution ϕ = exp(V ) if
and only if div(G) + G · ∇V = 0. Up to a renormalization, the average of
such a solution will be equal to 1, as soon as exp(V ) ∈ L1(Ω).

The average value is consequently an essential ingredient to have unique-
ness of the solution of equation (1.1) and we could be interested in the
following problem

(1.2)

{
−∆ϕ+ div(ϕF) = 0 in Ω,

with
∫

Ω ϕ = 1.

In the compact case without boundary E.C. Zeeman [26] proves the exis-
tence and uniqueness of a solution ϕ for an arbitrary smooth vector field F
(and without term source f = 0) on a compact manifold by the Perron-
Fröbenius method:

Theorem 1.1. — Let Ω be a compact manifold without boundary.
If F ∈ C∞(Ω) then there exists a unique non negative solution of (1.2).

Without proof in the non-compact case (as writes E.C. Zeeman on p. 152,
the extension of such results to non-compact case is an open question), E.C.
Zeeman gives some example with Ω = Rd. These examples show that in
the unbounded case uniqueness follows from some “boundary” conditions
on F, which are given by the behavior of F outside large sphere.

Many other works concern these equations of the Fokker-Planck type
in Rd. Most of these works describe specific assumptions for the potential F
at infinity. Let us quote as an example the beautiful recent series of works
by Hérau, Nier and Helffer [13, 14] about the linear kinetic Fokker-Planck
equation. See also the article [20] by Noarov in wich the author gives some
smallness conditions in some norm and rapid decay at infinity for F to
ensure the existence of a solution other than identical zero (in the case
f = 0).

In this article, we are interested in a possible generalization in bounded
domains. Usually, such a problem is coupled with boundary conditions
(Dirichlet, Neumann or mixted boundary conditions). For instance, the

TOME 60 (2010), FASCICULE 1



220 Laurent CHUPIN

natural weak formulation of the problem{
−∆ϕ+ div(ϕF) = f inΩ,

with ϕ = 0 on∂Ω
is written

(1.3)

{
Find ϕ ∈ H1

0 (Ω) such that for all ψ ∈ H1
0 (Ω)∫

Ω∇ϕ · ∇ψ −
∫

Ω ϕF · ∇ψ = 〈f, ψ〉,

where 〈f, ψ〉 corresponds to the duality product (H−1(Ω),H1
0 (Ω)). In order

that all terms in (1.3) be defined, the minimal hypotheses on data are:
f ∈ H−1(Ω) and, thanks to the classical Sobolev injections, F ∈ Ld∗(Ω)
where d∗ = d for d > 3 and d∗ ∈ ]2,+∞[ for d = 2. Within this framework,
we have (see [7]):

Theorem 1.2. — Let Ω be a bounded domain of Rd, d > 2. If f ∈
H−1(Ω) and F ∈ Ld∗(Ω) then there exists a unique solution of (1.3).

The proof of the generalization which we propose is primarily based on
the proof of this theorem. The main difficulty which appears for the study
of problem (1.3) is the following: although the operator ∆ is coercive, the
operator −∆ + div(·F) is generally not coercive. The reason for which the
result is still valid lies in the (conservative) form of the term div(ϕF). Let
us note that an equivalent theorem can be proved (see [7]) for equations
of kind −∆ϕ + G · ∇ϕ = f but that it is not possible to obtain a similar
general result for equations of the type −∆ϕ+ div(ϕF) + G · ∇ϕ = f . In
fact, the sum div(ϕF) + G · ∇ϕ makes appear zeroth order terms and it is
well known that the solutions of −∆ϕ+λϕ = 0, λ ∈ R, with homogeneous
Dirichlet boundary condition are not unique.

Moreover, J. Droniou proved that the same result is valid for other
boundary conditions as non-homogeneous Dirichlet, Fourier or mixed bound-
ary conditions (using more regularity for the domain Ω, say with Lips-
chitz continuous boundary). Concerning the Neumann boundary condi-
tions, J. Droniou and J.-L. Vazquez recently showed that the same problem
admits, for each fixed mean value, a unique solution with the said mean
value (see [8]).

In [8], the authors ask which necessary and sufficient conditions must be
placed on f , and what are the degrees of freedom on the solutions if F is
not regular enough. The question is related to the context of this present
article but is not the main issue discussed in this paper even if it remains
an interesting open problem. To have a first approach of such problems,
one will consult [8] and their references.

ANNALES DE L’INSTITUT FOURIER
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1.2. An (partial) answer

In this article we show that if the normal component of the vector F(x)
behaves(1) like α

dist(x,∂Ω) in a neighborhood of the boundary ∂Ω with α > 1
then a unique solution ϕ to the Fokker-Planck equation (1.1) exists as soon
as the average of ϕ is given. Moreover, we show that this unique solution
automatically vanishes at the boundary ∂Ω. More precisely we prove the
following result.

Theorem 1.3. — Let Ω be a bounded domain of Rd, d > 2. Let f ∈
H−1
M (this space will be precised later) and F = κ+∇V where κ ∈ L∞(Ω)

and V ∈ C∞(Ω) satisfies V = −∞ on the boundary of Ω. Under assump-
tions (H1), (H2) and (H3) (see more details page 239) then there exists a
unique solution of the Fokker-Planck equation (1.1) such that

∫
Ω ϕ = 1.

Obviously, the additive assumptions (H1), (H2) and (H3) enable to take
into account the examples where the normal part of F(x) behaves like

α
dist(x,∂Ω) in a neighborhood of the boundary ∂Ω with α > 1.

They are not satisfied when α 6 1. Thus, there remain many cases
without answers: for instance, when the normal part of F behaves like

α
dist(x,∂Ω) with α 6 1, or when the normal part of F behaves like α

dist(x,∂Ω)β

with α > 0 and β > 1. The assumptions (H1), (H2) and (H3) on the
potential V are rather difficult to apprehend. The reason for which we
have these assumptions is the following: they are used in this form in each
steps of the proof (primarily in the various lemmas). Thus if one of the
steps of the proof can be shown in another way that presented here, we can
hope to be freed from certain corresponding assumptions.

1.3. Outline of the paper

The paper is organized as follows:
• In Section 2, we give main tools adapted to the studied problem.

First of all, some tools about differential geometry to understand
“explosive” boundary conditions. Next we give all the lemmas which
are used in the main proof.
• In Section 3 the precise statement of the main result is enunciated,

see Theorem 3.3, page 239.

(1) We can verify that we have F /∈ Ld∗ (Ω), and that consequently the announced result
is a generalization of the Theorem 1.2.

TOME 60 (2010), FASCICULE 1



222 Laurent CHUPIN

• The Section 4 is devoted to the proof of the Theorem 3.3. It is com-
posed of two parts: the existence proof and the uniqueness proof.
• The last section (Section 5) gives an application to fluid mechanics

and some numerical results.

2. Main implements

In [5], the author gives an existence and a uniqueness result for a Fokker-
Planck equation for a particular vector field F and in a particular domain Ω
which is a ball. For more complex domains, we must understand the effect
of the geometry in the proof. We will present in this part some elements
of differential geometry adapted for our calculus. Next, we will precise the
functional framework adapted to the Fokker-Planck equation of this paper.
Finally, we will give multiple fundamental lemmas which are use for the
proof of the Theorem 3.3.

2.1. Elementary differential geometry

The results of this part are largely inspired on Subsection 2.1 of the
paper [2] and on the annexe C of the book [3].
Let Ω be a smooth (say C2) bounded domain in Rd, d > 2. We denote
by Γ its boundary and by ν the outward unitary normal to Γ. The distance
between any x ∈ Rd and the boundary Γ is denoted by δΓ(x). For any
ε > 0, we introduce the open subset of Ω:

Oε = {x ∈ Ω ; δΓ(x) < ε} and Ωε = {x ∈ Ω ; δΓ(x) > ε}.

It is classical that, for ε small enough, the two maps δΓ (called distance
to Γ) and PΓ (called projection on Γ) exist and are regular onOε. This allow
to use tangential and normal variables near Γ, defining for any function
f : Oε → R the corresponding function f̃ : [0, ε]× Γ→ R by(2)

∀(r,θ) ∈ [0, ε]× Γ , f̃(r,θ) = f
(
θ − r ν(θ)

)
.

Moreover, for any f ∈ L1(Oε) we have the following change of variables
formula:

(2.1)
∫
Oε
f(x) dx =

∫
Γ

∫ ε

0
f̃(r,θ) |J(r,θ)| dr dθ,

(2) For non-ambiguous cases, f̃ and f will be together denote f .

ANNALES DE L’INSTITUT FOURIER
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Γ

Γ
x

θ
PΓ(x)

Ωε

Oε

δΓ(x)

ε

ν(θ)

Moreover, for any f ∈ L1(Oε) we have the following change of variables
formula:

(2.1)

∫

Oε

f(x) dx =

∫

Γ

∫ ε

0
f̃(r,θ) |J(r,θ)| dr dθ,

where dr and dθ corresponds to the Lebesgue measure on [0, ε] and Γ re-
spectively, and where J is the jacobian determinant of the previous change
of variables. Introduce κM = supθ∈Γ supi κi(θ), where κ1(θ),..., κd−1(θ)
are the principal curvatures of Γ at θ, we have for 0 ! r ! ε and for θ ∈ Γ

(1 − ε κM )d−1 ! J(r,θ) ! 1.

Using the change of variables (2.1) we deduce that for f ∈ L1(Oε) we have

(2.2) (1 − εκM )d−1

∫

Γ

∫ ε

0
f̃(r,θ) drdθ !

∫

Oε

f(x) dx !

∫

Γ

∫ ε

0
f̃(r,θ) drdθ.

Roughly speaking these relations show that in a thin tubular neighborhood
of Γ in Ω the jacobian J(r,θ) is equivalent to 1. Consequently, the rela-

tions (2.2) give an approximation of
∫
Oε

f by
∫
Γ

∫ ε
0 f̃ .

Note too that it is possible to define δΓ as a regular function on Ω. This
extension will be also noted δΓ.

2.2. Functional spaces

The Fokker-Planck equation (1.1) make appear a potential V , assume to
be smooth on Ω, via the force F = κ + ∇V . This potential is supposed to
be confinant so that we assume that eV ∈ L1(Ω). We can always define a
maxwellian function M by

M =
eV

∫
Ω eV

.

Note that M ∈ C∞(Ω : R∗
+) with

∫
Ω M = 1. Note too that the interesting

cases for the present study correspond to a maxwellian M vanishing on the
boundary Γ = ∂Ω (that is V = −∞ on Γ). All the maxwellians considered

SUBMITTED ARTICLE : AIF-CHUPIN-V3.TEX
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Γ
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of Γ in Ω the jacobian J(r,θ) is equivalent to 1. Consequently, the rela-
tions (2.2) give an approximation of

∫
Oε f by

∫
Γ
∫ ε

0 f̃ . Note too that it is
possible to define δΓ as a regular function on Ω. This extension will be also
noted δΓ.

2.2. Functional spaces

The Fokker-Planck equation (1.1) make appear a potential V , assume to
be smooth on Ω, via the force F = κ+∇V . This potential is supposed to
be confinant so that we assume that eV ∈ L1(Ω). We can always define a
maxwellian function M by

M = eV∫
Ω e

V
.

Note that M ∈ C∞(Ω : R∗+) with
∫

Ω M = 1. Note too that the interesting
cases for the present study correspond to a maxwellian M vanishing on the
boundary Γ = ∂Ω (that is V = −∞ on Γ). All the maxwellians considered
in this paper will satisfy M = 0 on Γ. Using such a maxwellian, the Fokker-
Planck equation (1.1) is written

(2.3) div(ϕκ−M∇
( ϕ
M

)
) = f.
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224 Laurent CHUPIN

From the peculiar form of this Fokker-Planck equation (2.3), the adapted
functional spaces use Sobolev weight spaces on the domain Ω ⊂ Rd. More
precisely, we introduce

L2
M := ML2(Mdx) and H1

M := MH1(Mdx),

endowed with their natural norms respectively given by

‖ϕ‖2L2
M

=
∫

Ω
M
∣∣∣ ϕ
M

∣∣∣2,
‖ϕ‖2H1

M
=
∫

Ω
M
∣∣∣ ϕ
M

∣∣∣2 +M
∣∣∣∇( ϕ

M

)∣∣∣2.
Note that a large literature on weighted Sobolev spaces exists, see for in-
stance [23, 25], the references given in the notes at the end of Chapter 1
of [12] or the classical book [24]. Among all the weights which are gener-
ally considered in the literature, only some are vanished on Rd as it is the
case of the weight M . We refer to [24] for references of spaces with weights
which equal to a power of the distance to the boundary. Nevertheless, the
spaces L2(Mdx) and H1(Mdx) being spaces with “traditional” weights, the
spaces L2

M and H1
M are not it. For this reasons, the results shown in the fol-

lowing section are not always “traditiona” corollaries (except some whose
proof is a direct consequence of the results in L2(Mdx) and H1(Mdx), see
for example the proof of lemma 2.4).

Note first that the two spaces L2
M and H1

M are Hilbert spaces (see [24,
Th. 3.2.2a]). We introduce the following normalized subspace

H1
M,0 := {ψ ∈ H1

M ;
∫

Ω
ψ = 0}.

In the sequel, the space H1
M will by equipped too with the semi-norm

defined by

‖ψ‖2H1
M,0

=
∫

Ω
M
∣∣∣∇( ψ

M

)∣∣∣2,
and we will see (Lemma 2.9 on page 235) that ‖ · ‖H1

M,0
is a norm on the

space H1
M,0. Finally, we denote H−1

M the topological dual of H1
M,0, that

is the set of continuous linear forms on H1
M,0. Each application χ ∈ H−1

M

will be defined by χ : ϕ ∈ H1
M,0 7→ 〈χ, ϕ〉 ∈ R. By its continuity, for each

χ ∈ H−1
M there exists C ∈ R such that

∀ϕ ∈ H1
M,0 |〈χ, ϕ〉| 6 C‖ϕ‖H1

M,0
.

As it is usual, the smallest of these constants C is denoted ‖χ‖H−1
M

: it is
the norm of χ on H−1

M .

ANNALES DE L’INSTITUT FOURIER
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2.3. Properties of the functional spaces

The proof of the main theorem (Theorem 3.3) follows the ideas of J. Dro-
niou [7]. Nevertheless, the proof of J. Droniou, given in the case where
F ∈ Ld∗(Ω), does not use these “degenerated” spaces and use traditional
results concerning usual Sobolev spaces. The essential contributions which
are presented ties in the fact that these “classical” lemmas in the case
where M does not vanished on Ω are still true (sometimes in a weaker
form) when M is a maxwellian as previously introduced, and in particular
when M = 0 on Γ. So, the goal of this subsection is to give some essen-
tial properties of these functional spaces (Poincaré-type inequality, Sobolev
injection, compacity result, Hardy-type inequality...). Notice that in the es-
timates, the symbol . means “up to a harmless multiplicative constant”,
allowed to depend on the domain Ω only. The first result that we present
is a result allowing to controlled 1

δΓ

ϕ√
M

in L2(Ω) as soon as ϕ ∈ H1
M . This

result can be seen as an inequality of Hardy-type (3) . We will prove this
first lemma under the following assumption (4)

(H1)



∃a1 < 1
(∇RM

M

)2
+ 2∇R

(∇RM
M

)
>
−a1

δ2
Γ
,

∇RM(0) = 0 and ∃ a2 > 0 ∇RM
M

> a2,

∃a3 > 0 ∇RM
∫
R

1
M

< a3.

These hypotheses will be only used in the neighbourhood of the boundary Γ
of Ω. In such a neighbourhood, the notation ∇R corresponds to the radial
derivative (that is to say the derivative in the direction of the normal vector
to the boundary). In the same way, the notation

∫
R

corresponds to a linear
integral along normal lines from the boundary Γ of Ω.

The various assumptions introduced in this part will be discussed in
Section 3. Nevertheless, it is important to notice that the three assump-
tions formulated in (H1) are independent. For example, in the radial case
the function M defined by M(r) =

√
r satisfy the last point of (H1) but

does not satisfy the second point. Reciprocally, M(r) = r/ln(r) satisfy the
second point but does not satisfy the last point.

(3) Hardy inequality indicates that for a function f defined on a bounded domain Ω
of Rd and vanishing on the boundary Γ of Ω we get |f/δΓ|L2(Ω) . |∇f |L2(Ω) where δΓ
corresponds to the distance to the boundary Γ.
(4) Recall that, as it is specified just before, in this article the functionM is a Maxwellian
function which vanished on the boundary of the domain. The assumptions introduced
here are consequently additional assumptions.

TOME 60 (2010), FASCICULE 1
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Lemma 2.1 (Hardy-type inequality). — If M satisfies (H1) then for any
ϕ ∈ H1

M we have ∫
Ω

1
δ2

Γ
M
∣∣∣ ϕ
M

∣∣∣2 . ‖ϕ‖2H1
M
.

In fact, as can be seen from the proof, we shall not need entire norm of ϕ
in H1

M since we will only use the radial part of the gradient.
Proof. — For any ε small enough (more precisly, ε 6 εΩ, see Part 2.1)

we have Ω = Ωε ∪ Oε and∫
Ω

M

δ2
Γ

∣∣∣ ϕ
M

∣∣∣2 =
∫

Ωε

M

δ2
Γ

∣∣∣ ϕ
M

∣∣∣2 +
∫
Oε

M

δ2
Γ

∣∣∣ ϕ
M

∣∣∣2.
Since 1/δΓ is bounded in Ωε we easily deduce that∫

Ωε

M

δ2
Γ

∣∣∣ ϕ
M

∣∣∣2 .
∫

Ωε
M
∣∣∣ ϕ
M

∣∣∣2 6 ‖ϕ‖2L2
M

and the main difficulty to prove the Lemma 2.1 is concentrated in the
control of the integral

I0 :=
∫
Oε

M

δ2
Γ

∣∣∣ ϕ
M

∣∣∣2.
For similar reasons, we can suppose that

(2.4) ϕ
∣∣
Ωε∩Oε

= 0.

In fact, introduce a regular function γε (only depending on Ω and ε) wich
vanished outside the ε-neighborhood Oε of Γ and is equal to 1 in the ε

2 -
neighborhood. The estimate in Lemma 2.1 clearly holds for (1− γε)ϕ and
the proof therefore has to by conducted only for γεϕ, which for sake of
simplicity will be denote ϕ in the following.FOKKER-PLANCK EQUATION IN BOUNDED DOMAIN 11

Γ

γε = 1
γε = 0

Ωε

Oε Ωε ∩Oε

For each θ ∈ Γ let introduce the function

hθ : r ∈ ]0, ε] #→
ϕ(r,θ)√
M(r,θ)

.

Note that the relation (2.4) implies that hθ(ε) = 0.
To simplify the notations, when there are no ambiguities, we do not note the
dependence with respect to the variable θ in hθ and in M . The integral I0

writes using the approximation (2.2)

I0 =

∫

Γ

∫ ε

0

h(r)2

r2
dr dθ

The goal is to control I0 with ‖ϕ‖H1
M

. We will proceed in two steps:

(1) We prove that h(r)M ′(r)/M(r) = 0 on r = 0;
(2) We control I0 with ‖ϕ‖H1

M
.

• Step (1): We use the change of variable adapted to the maxwellian M :

Φ : (r,θ) ∈ ]0, ε] × Γ #−→ (s,θ) ∈ [0,+∞[×Γ,

where s =

∫ ε

r

dt

M̃(t,θ)
.

Notice that the jacobian determinant of Φ(r,θ) egals −1/M̃(r,θ) and there-
fore, M being positive on Ω, it does not cancel on ]0, ε] × Γ. Moreover, for
all θ ∈ Γ we have limr→0 Φ(r,θ) = (+∞,θ) since using the assumption

on M we get
∫ ε
0 dr/M̃(r,θ) = +∞. Consequently Φ is a local diffeomor-

phism from ]0, ε] × Γ to Φ(]0, ε] × Γ) = [0,+∞[×Γ.

For any function f̃ : ]0, ε[×Γ #→ R we will define the function, noted

f̂ : ]0,+∞[×Γ, by f̃ = f̂ ◦ Φ. Using the change of variables introduce in
Subsection 2.1, for any function f : Oε #→ R we have define the functions
f̃ : ]0, ε[×Γ #→ R and f̂ : ]0,+∞[×Γ such that, with the previous notations
for the name of variables:

f(x) = f̃(r, θ) = f̂(s, θ).

In the nonambiguous cases, we will note f , all the functions f , f̃ or f̂ .

As announced before the proof, we only need the radial part of the gradient

SUBMITTED ARTICLE : AIF-CHUPIN-V3.TEX

The value of ε being able to be chosen as small as desired, we shall use
copiously the change of variables (2.1) as well as approximation (2.2). For
each θ ∈ Γ let introduce the function

hθ : r ∈ ]0, ε] 7→ ϕ(r,θ)√
M(r,θ)

.
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Note that the relation (2.4) implies that hθ(ε) = 0. To simplify the nota-
tions, when there are no ambiguities, we do not note the dependence with
respect to the variable θ in hθ and in M . The integral I0 writes using the
approximation (2.2)

I0 =
∫

Γ

∫ ε

0

h(r)2

r2 dr dθ

The goal is to control I0 with ‖ϕ‖H1
M

. We will proceed in two steps:

(1) We prove that h(r)M ′(r)/M(r) = 0 on r = 0;
(2) We control I0 with ‖ϕ‖H1

M
.

Step (1). — We use the change of variable adapted to the maxwellianM :

Φ : (r,θ) ∈ ]0, ε]× Γ 7−→ (s,θ) ∈ [0,+∞[×Γ,

where s =
∫ ε

r

dt

M̃(t,θ)
.

Notice that the jacobian determinant of Φ(r,θ) egals−1/M̃(r,θ) and there-
fore, M being positive on Ω, it does not cancel on ]0, ε]×Γ. Moreover, for all
θ ∈ Γ we have limr→0 Φ(r,θ) = (+∞,θ) since using the assumption on M
we get

∫ ε
0 dr/M̃(r,θ) = +∞. Consequently Φ is a local diffeomorphism

from ]0, ε]× Γ to Φ(]0, ε]× Γ) = [0,+∞[×Γ.
For any function f̃ : ]0, ε[×Γ 7→ R we will define the function, noted

f̂ : ]0,+∞[×Γ, by f̃ = f̂ ◦ Φ. Using the change of variables introduce in
Subsection 2.1, for any function f : Oε 7→ R we have define the functions
f̃ : ]0, ε[×Γ 7→ R and f̂ : ]0,+∞[×Γ such that, with the previous notations
for the name of variables:

f(x) = f̃(r, θ) = f̂(s, θ).

In the nonambiguous cases, we will note f , all the functions f , f̃ or f̂ . As
announced before the proof, we only need the radial part of the gradient
in the desired estimate. In term of new coordinates, the radial part of the
gradient of a function f defined on Ωε corresponds to the derivative with
respect to the variable r in the new coordinates: ∇Rf(x) = ∂rf̃(r,θ). For
any θ ∈ Γ let gθ be the function defined on ]0,+∞[ by

gθ(s) := ϕ(x)
M(x)

= hθ(r)√
M(r,θ)

.
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Derivating with respect to the variable s, we obtain (as previously the
variable θ will be understood as a parameter and we do not note its de-
pendence):

M(x)
∣∣∣∣∇R( ϕ(x)

M(x)

)∣∣∣∣2 dx = −|g′(s)|2|J(r,θ)| dθ ds.

We deduce that (using the approximation J ∼ 1 valid for ε small enough)

I1 :=
∫

Ω
M(x)

∣∣∣∣∇R( ϕ(x)
M(x)

)∣∣∣∣2 dx =
∫

Γ

(∫ +∞

0
|g′(s)|2 ds

)
dθ.

Since ϕ ∈ H1
M the integral I1 is finite. Consequently, for almost every θ ∈ Γ

we have ∫ +∞

0
|g′(s)|2 ds < +∞.

We deduce that

∀α > 0 ∃sα > 0
∫ +∞

sα

|g′(s)|2 ds 6 α2.

Next, using the Cauchy-Schwarz inequality we obtain, for any s ∈ ]0,+∞[,

g(s) = g(sα) +
∫ s

sα

g′(t) dt 6


g(sα) + α

√
s− sα if s > sα,

sup
[0,sα]

g if 0 < s 6 sα.

We deduce that for almost every θ ∈ Γ, for all α > 0 there exists a constant
Cθ,α > 0 such that, for any s ∈ ]0,+∞[ we have

g(s) 6 α
√
s+ Cθ,α.

Using the r variable, this result is written: for any r ∈ ]0, ε]

M ′(r)
M(r)

h(r)2 6 α2M ′(r)
∫ ε

r

dt

M(t)
+M ′(r)C2

θ,α,

that enables, see assumption (H1), to obtain for almost every θ ∈ Γ the
relation

(2.5) M ′(r)
M(r)

h(r)2
∣∣∣∣
r=0

= 0.

Step (2). — Now, we prove the lemma. Since ϕ ∈ H1
M , we know that

I1 :=
∫

Ω
M(x)

∣∣∣∇R( ϕ(x)
M(x)

)∣∣∣2dx 6 ‖ϕ‖2H1
M
< +∞.
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We express I1 making appear the h function and using the change of vari-
ables x 7→ (r,θ) together the usual approximation for the jacobian deter-
minant of this change of variable (see the Part 2.1 and the relations (2.2)).
We obtain

I1 =
∫

Γ

∫ ε

0
M(r,θ)

∣∣∣ ∂
∂r

( ϕ(r,θ)
M(r,θ)

)∣∣∣2 dr dθ :=
∫

Γ
I1(θ) dθ,

where, for θ ∈ Γ, the quantity I1(θ) is defined by

I1(θ) =
∫ ε

0
M(r)

( 1√
M(r)

h′(r)− M ′(r)
2M(r)

√
M(r)

h(r)
)2
dr

=
∫ ε

0

(
h′(r)2 − M ′(r)

M(r)
h′(r)h(r) + M ′(r)2

4M(r)2h(r)2
)
dr.

Moreover, an integration by part gives

−
∫ ε

0

M ′(r)
M(r)

h′(r)h(r) dr = 1
2

∫ ε

0

(M ′(r)
M(r)

)′
h(r)2 dr − 1

2

[M ′(r)
M(r)

h(r)2
]ε

0
.

We deduce that

I1(θ) =
∫ ε

0

(
h′(r)2 + λ(r)h(r)2

4r2

)
dr − 1

2

[M ′(r)
M(r)

h(r)2
]ε

0

with λ(r) =
((M ′(r)

M(r)

)2
+ 2
(M ′(r)
M(r)

)′ )
r2.

The assumption (H1) on M is written λ > −a1 > −1. Moreover using the
equation (2.5) and the relation (2.4) the braket term is vanished. We obtain

I1(θ) >
∫ ε

0

(
h′(r)2 − a1

h(r)2

4r2

)
dr.

Moreover, thanks to the Hardy inequality (holds since h vanishes at 0,
this is a direct consequence of equation (2.5) and of the assumptionM ′/M>
a2 > 0 in H1), we deduce

(2.6) I1(θ) > (1− a1)
∫ ε

0
h′(r)2 dr.

Since a1 < 1, this control allows us to estimate
∫ ε

0 h
′(r)2dr. From the Hardy

inequality again, we obtain the following estimate∫ ε

0

h(r)2

r2 dr 6 4
∫ ε

0
h′(r)2dr 6

4
1− a1

I1(θ).

Integrate with respect to the variable θ, we obtain

I0 =
∫

Γ

∫ ε

0

h(r)2

r2 dr dθ 6
4

1− a1
I1.
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The function ϕ being inH1
M , right hand side termes are bounded by ‖ϕ‖2

H1
M

.
Up to the change of variables we deduce∫

Oε

M

δ2
Γ

∣∣∣ ϕ
M

∣∣∣2 . ‖ϕ‖2H1
M
,

which implies the announced result. �

The additional hypothesis

(H2) ∃ b > 0 |∇M | 6 1
b

M

δΓ

implies from Lemma 2.1 that if ϕ ∈ H1
M then ∇MM

ϕ√
M
∈ L2(Ω). It is in this

form that the Lemma 2.1 will be generally used in this article. Note that
in term of x variable, the inequality (2.6) show us that ∇R( ϕ√

M
) belongs

to L2(Ω). This propertie is completed by the next lemma:

Lemma 2.2 (Inclusion). — If M satisfies (H1) and (H2) then we have
the following inclusions

L2
M ⊂ L2(Ω) and H1

M ⊂ H1
0 (Ω).

More precisely, if ϕ ∈ L2
M then ϕ/

√
M ∈ L2(Ω) and if ϕ ∈ H1

M then
ϕ/
√
M ∈ H1(Ω).

Proof. — Inclusion L2
M ⊂ L2(Ω) is obvious since on the one hand, by

definition of L2
M , we have ϕ ∈ L2

M if and only if ϕ/
√
M ∈ L2(Ω), and on

the other hand
√
M ∈ L∞(Ω). To prove the inclusion H1

M ⊂ H1
0 (Ω) we use

the Lemma 2.1 with additional assumption (H2): if ϕ ∈ H1
M then we have

∇
( ϕ√

M

)
= ∇
( ϕ
M

√
M
)

=
√
M∇
( ϕ
M

)
︸ ︷︷ ︸

L2(Ω)

+ 1
2
∇M
M

ϕ√
M︸ ︷︷ ︸

L2(Ω)

∈ L2(Ω).

Consequently ϕ/
√
M ∈ H1(Ω). Hence this function ϕ/

√
M has a trace on

the boundary Γ. Since M is a regular function on Ω vanishing on Γ, we
deduce that ϕ = ϕ√

M

√
M ∈ H1

0 (Ω). �

This next lemma is interesting in themselves for understanding the space
H1
M better. Moreover, it will be used in the proof of the Lemma 2.7.

Lemma 2.3 (Density). — If M satisfies (H1) and (H2) then we have
the following equality

C∞0
H1
M = H1

M .
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Proof. — Let ϕ ∈ H1
M and define, for n ∈ N∗, the function ϕn by

ϕn = ϕχ
( 1
nM

)
where χ(t) =


1 if 0 6 t < 1,

2− t if 1 6 t < 2,
0 if t > 2.

We successively prove that
(1) the functions ϕn are in H1

M ,
(2) we can approach these functions ϕn with C∞0 functions,
(3) the sequence {ϕn}n∈N∗ converges to ϕ in H1

M sense.
These three points clearly implicate the lemma.

(1) By definition of χ, we have for all n ∈ N∗ the relation |ϕn| 6 |ϕ|
hence

∫
Ω M
∣∣ϕn
M

∣∣2 6
∫

Ω M
∣∣ ϕ
M

∣∣2 which is bounded since ϕ ∈ H1
M ⊂

L2
M . To control the gradient part of the H1

M -norm of ϕn, n ∈ N∗,
we write∣∣∣∇(ϕn

M

)∣∣∣ = ∣∣∣∇( ϕ
M

)
χ
( 1
nM

)
+ ϕ

M
∇
(
χ
( 1
nM

))∣∣∣
6
∣∣∣∇( ϕ

M

)∣∣∣+ ∣∣∣ ϕ
M
∇
(
χ
( 1
nM

))∣∣∣.
By definition of the trucature function χ, the last term is not egal
to 0 if and only if 1

2n 6 M < 1
n . In this case it write

∣∣ 1
n
ϕ
M
∇M
M2

∣∣ and
can be controlled by 2

∣∣ ϕ
M
∇M
M

∣∣. We have∣∣∣∇(ϕn
M

)∣∣∣2 6
∣∣∣∇( ϕ

M

)∣∣∣2 + 4
∣∣∣ ϕ
M

∇M
M

∣∣∣2.
Since ϕ ∈ H1

M and using the Lemma 2.1 together with the assump-
tion (H2), we deduce that

∫
Ω M
∣∣∇(ϕnM )∣∣2 is bounded. Consequently,

ϕn ∈ H1
M .

(2) For each n ∈ N∗ the function ϕn ∈ H1
M ⊂ H1 is egal to 0 in

a neighborhood of the boundary Γ. Approaching ϕn by a sequence
{ϕn,m}m∈N (which is egal to 0 on a neighborhood of Γ) in H1

0 allows
to approach ϕn by the same sequence {ϕn,m}m∈N in H1

M .
(3) Note that ϕ(x)− ϕn(x) egals to 0 if M(x) > 1

n . In the other case,
that is for all x ∈ Ω such that M(x) 6 1

n , we get |ϕn(x)− ϕ(x)| 6
|ϕ(x)| since 0 6 χ 6 1. Hence∫

Ω
M
∣∣∣ϕn − ϕ

M

∣∣∣2 6
∫

x∈Ω ;M(x)6 1
n

M
∣∣∣ ϕ
M

∣∣∣2.
Since ϕ ∈ H1

M ⊂ L2
M and since the measure of the set

{x ∈ Ω ; M(x) 6
1
n
}
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tends to 0 when n tends to +∞, we have

(2.7)
∫

Ω
M
∣∣∣ϕn − ϕ

M

∣∣∣2 n→+∞−−−−−→ 0.

Concerning the gradient part, we write

∇
(ϕn − ϕ

M

)
= ∇
( ϕ
M

)(
χ
( 1
nM

)
− 1
)

+ ϕ

M
∇
(
χ
( 1
nM

)
− 1
)
.

The first term is non zero if M 6 1
n and is bounded by

∣∣∇( ϕM )∣∣ in
this case. The last term is non zero if 1

2n 6 M < 1
n and is bounded

by 2
∣∣∇M
M

ϕ
M

∣∣. Hence we have∫
Ω
M
∣∣∣∇(ϕn − ϕ

M

)∣∣∣2 6
∫

x∈Ω ;M(x)6 1
n

M
∣∣∣∇( ϕ

M

)∣∣∣2 + 4
∣∣∣∇M
M

ϕ√
M

∣∣∣2.
Since ϕ ∈ H1

M , the first term is bounded, and using the result of
the Lemma 2.1 again, we know that the last term is bounded too.
More precisely, as previously, using the fact that the measure of the
set {x ∈ Ω ; M(x) 6 1

n} tends to 0 when n tends to +∞, we have

(2.8)
∫

Ω
M
∣∣∣∇(ϕn − ϕ

M

)∣∣∣2 n→+∞−−−−−→ 0.

The relations (2.7) and (2.8) ensure that the sequence {ϕn}n∈N∗

converges to ϕ in H1
M .

�

Now we introduce a compacity result for the spaces L2
M and H1

M which
is comparable to the classical compact injection H1

0 (Ω) ↪→ L2(Ω).

Lemma 2.4 (Compacity). — If M satisfies the assumption (H1) then
the injection H1

M ↪→ L2
M is compact.

Proof. — To prove this lemma, we use the following result due to G.
Metivier [19, Proposition 3.1 p. 221] affirming that the weight Sobolev
space injection H1(Mdx) ⊂ L2(Mdx) as soon as we have M > 0 on Ω,
M = 0 on Γ and ∇M 6= 0 out of Γ. Notice that this last point is a
consequence of the assumption (H1) since ∇RM > a2M > 0 out of Γ.
Consider a sequence {ϕn}n∈N bounded in H1

M and show that a convergent
sub-sequence can be extracted. By definition of H1

M , for all n ∈ N, there
exists gn ∈ H1(Mdx) such that ϕn = Mgn. The sequence {ϕn}n∈N being
bounded in H1

M , the sequence {gn}n∈N is bounded in L2
M . We use here

the result of G. Métivier. We can extract from the sequence {gn}n∈N a
sub-sequence, still noted {gn}n∈N and such that

gn ⇀ g in H1(Mdx) and gn → g in L2(Mdx).
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By definition of the spaces H1
M and L2

M we conclude that

ϕn ⇀Mg in H1
M and ϕn →Mg in L2

M ,

which proves that the injection H1
M ↪→ L2

M is compact. �

In the same way, we present the next lemma which proves that functions
in H1

M are in certain LpM , p > 2, where the weighted-space LpM is defined
by

LpM =
{
ϕ ∈ L1

loc(Ω) ;
(∫

Ω
M
∣∣∣ ϕ
M

∣∣∣p )1/p
< +∞

}
and endowed with its usual norm. This kind of result is essential for the
proof of the main theorem (Theorem 3.3); it is proved under the assump-
tions (H1) and (H2). We will note that assumption (H2) is used in the
following weak formulation (obtained by integration):

(H2) =⇒ ∃C ′ > 0 M > C ′ δ
1/b
Γ .

More exactly, we have

Lemma 2.5 (Sobolev-type injection). — If M satisfies (H1) and (H2)
then there exists p > 2 such that the injection H1

M ↪→ LpM is continuous.

Proof. — First, let us note that ϕ ∈ LpM if and only if ϕ
M1−1/p ∈ Lp(Ω)

where the spaces Lp(Ω) are the classical Sobolev spaces on the set Ω. Let
ϕ ∈ H1

M . In the next three steps we will prove that there exists p > 2
such that ϕ

M1−1/p ∈ Lp(Ω). Since ϕ ∈ H1
M we clearly have ϕ ∈ L2

M and
so ϕ/

√
M ∈ L2. Moreover, using assumptions Lemma 2.1 with assump-

tion (H2) we obtain

∇
(

ϕ√
M

)
= ∇ϕ√

M︸ ︷︷ ︸
L2(Ω)

+ ∇M
M

ϕ√
M︸ ︷︷ ︸

L2(Ω)

∈ L2(Ω).

Consequently, ϕ/
√
M ∈ H1(Ω) and using the classical Sobolev injections,

we deduce that ϕ/
√
M ∈ Lq(Ω) for all q 6 2d/(d − 2) (and for q < +∞

in the 2-dimensional case). Using the assumption (H2) and the Hardy in-
equality (Lemma 2.1) we obtain

ϕ√
MM b

= 1
δΓ

ϕ√
M︸ ︷︷ ︸

L2(Ω)

× δΓ

M b︸︷︷︸
L∞(Ω)

∈ L2(Ω).
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From the two previous steps, we can write that for any β ∈ R such that
0 6 β 6 b we obtain

ϕ√
MMβ

=
( ϕ√

MM b

)β/b
︸ ︷︷ ︸

L2b/β(Ω)

×
( ϕ√

M

)1−β/b

︸ ︷︷ ︸
Lqb/(b−β)(Ω)

∈ Lr(Ω)

with r = 2bq
qβ+2(b−β) . Let us note p the real such that 1 − 1

p = β + 1
2 . The

previous result is written: for any p ∈ R such that 2 6 p 6 2
1−2b we obtain

ϕ

M1−1/p ∈ L
r with r = 4bpq

qp− 2q + 4bp− 2p+ 4
.

In particular, we have ϕ
M1−1/p ∈ Lp as soon as r > p. The inequality r > p

holds if and only if p 6 2 + 4b(q−2)
4b+q−2 . It is thus possible to find p > 2 such

that ϕ
M1−1/p ∈ Lp. �

Remark 2.6. — According to the previous proof, the inclusion H1
M ⊂

LpM is obtained for all p 6 2+ 4b
b(d−2)+1 . For instance, in the two dimensional

case (d = 2) the inclusion H1
M ⊂ L

p
M holds for all p < 2 + 4b.

To build functions in H1
M,0 we use the following lemma which will be

important to obtain a lot of test functions in the weak formulation later.
The hypothesis (H1) allows to use the Lemma 2.3.

Lemma 2.7. — Assume (H1), (H2) hold. Let ψ ∈ H1
M and ξ : R → R

be a continuous application, piecewise-C1 such that ξ′ is bounded on R.
Then we have

ϕ := Mξ
( ψ
M

)
−M
∫

Ω
Mξ
( ψ
M

)
∈ H1

M,0,

with ∇
(
ϕ
M

)
= ξ′
(
ψ
M

)
∇
(
ψ
M

)
and ‖ϕ‖H1

M,0
6 ‖ξ′‖L∞(R)‖ψ‖H1

M,0
.

Proof. — The proof of this lemma uses the Stampacchia lemma which
affirms that if g ∈ H1(ω), ω being an open subset of Rd, and ξ : R → R
is continuous, piecewise-C1, such that ξ′ is bounded on R then we have
ξ(g) ∈ H1(ω) and ∇ξ(g) = ξ′(g)∇g.

The Stampacchia lemma is a local result, hence applied to g = ψ/M

which is in H1
loc(Ω) it shows that the formula ∇ξ

(
ψ
M

)
= ξ′
(
ψ
M

)
∇
(
ψ
M

)
holds in D′(Ω). From this formula, it is obvious that ϕ ∈ H1

M . The fact
that ϕ is null average is then immediate since

∫
Ω M = 1. �

One more important ingredient in our study is the following linear oper-
ator

Lψ = −div
(
M∇
( ψ
M

))
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on the space L2
M and with domain, see [18, Remark 3.8, p. 9] given by

D(L) = {ψ ∈ H1
M ;
∫

Ω

1
M

∣∣∣ div
(
M∇
( ψ
M

))∣∣∣2 < +∞}.

We also find in [18, Proposition 3.6, p. 8] the following result and its proof
which will be used to introduce the Galerkin approximation method later.

Lemma 2.8. — The operator L is self-adjoint and positive. Moreover, it
has a discrete spectrum formed by a sequence (`n)n∈N such that `n tends
to +∞ when n tends to +∞.

Concerning the uniqueness results for a linear operator, it is known that
the eigenvalue 0, that is the kernel of the operator L, is particularly impor-
tant.

Lemma 2.9. — The kernel of the operator L is the set {λM,λ ∈ R}.

Proof. — This lemma is an immediate consequence of the following for-
mulation of the operator L :

(2.9) 〈Lψ,ϕ〉L2
M

=
∫

Ω
M∇
( ψ
M

)
· ∇
( ϕ
M

)
where 〈·, ·〉L2

M
corresponds to the scalar product subordinated to the norm

‖ · ‖L2
M

on L2
M . In fact, let ψ be a function such that Lψ = 0. We obtain

〈Lψ,ψ〉L2
M

= 0 and the formulation (2.9) yields∇
(
ψ/M
)

= 0. Thus, thanks
to the connexity of Ω, we deduce that ψ = λM with λ ∈ R. �

The last lemma is a generalized Poincaré inequality adapted to the
weighted spaces introduced before. To obtain such a lemma, we use the
fact that the potential V = ln(M) is concave. More precisely we will sup-
pose that

(H3) ∃γ > 0 ∇
(∇M
M

)
6 −γ Id.

Lemma 2.10 (Poincaré-type inequality). — If M satisfies (H3) then for
all ϕ ∈ H1

M we get the following Poincaré-type inequality

1
γ

∫
Ω
M
∣∣∣∇( ϕ

M

)∣∣∣2 +
(∫

Ω
ϕ
)2

> ‖ϕ‖2L2
M
.

For the free-average functions (that is for ψ ∈ H1
M,0) this Lemma 2.10

show that the two norms ‖·‖H1
M

and ‖·‖H1
M,0

on this space are equivalents.
This equivalence will be usually useful in the remainder of the paper.
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Proof. — Let ϕ ∈ H1
M and introduce the non-stationary problem{

ut(t,x) + Lu(t,x) = 0 for (t,x) ∈ R× Ω,
u(0,x) = ϕ(x) for x ∈ Ω.

The following time-dependant functions

D(t) =
∫

Ω
M
∣∣∣ u
M

∣∣∣2 and H(t) =
∫

Ω
M
∣∣∣∇( u

M

)∣∣∣2
satisfy

D′(t) = 2
∫

Ω

u

M
· ut = −2

∫
Ω

u

M
· Lu = −2

∫
Ω
M
∣∣∣∇( u

M

)∣∣∣2 = −2H(t).

Moreover we have

H ′(t) = −2
∫

Ω
M∇
( u
M

)
· ∇
(Lu
M

)
.

For clearify the following computations, let us introduce the duality oper-
ator L? such that

L?v := − 1
M

div(M∇v) = −∆v − ∇M
M
· ∇v.

We have Lu = ML?
(
u
M

)
and

H ′(t) = −2
∫

Ω
M∇
( u
M

)
· ∇
(
L?
( u
M

))
.

Since ∇(L?v) = L?(∇v)−∇
(∇M
M

)
· ∇v we deduce that

H ′(t) = −2
∫

Ω
M∇
( u
M

)
· L?
(
∇
( u
M

))
+ 2
∫

Ω
M∇
( u
M

)
·
[
∇
(∇M
M

)
· ∇
( u
M

)]
.

The first term of the right hand side is written −2
∫

Ω M
∣∣∇2( u

M

)∣∣2 and is
non-positive. Using the assumption (H3), the last term of the right hand
side is controled by −2γ

∫
Ω M
∣∣∇( uM )∣∣2, that is by −2γH(t). We obtain

H ′(t) 6 −2γ H(t).

Hence H(t) 6 H(0)e−2γt. Integrate in time, we obtain:

(2.10) D(0)−D(+∞) = 2
∫ +∞

0
H(t) dt 6

1
γ
H(0).

To evaluate D(+∞), we consider a stationary solution u∞. We note that
due to the spectral properties of the operator L (see Lemma 2.8), for any
initial data, u tends to a stationary solution u∞ as t→ +∞. By definition
it is in the kernel of L and following the Lemma 2.9 there exists a constant λ
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such that u∞ = λM . But the evolution equation on u implies that the mean
value

∫
Ω u is conserved:

∫
Ω u∞ =

∫
Ω ϕ, that allows to obtain the constant

λ =
∫

Ω ϕ. We deduce that

D(+∞) =
∫

Ω
M
∣∣∣u∞
M

∣∣∣2 =
(∫

Ω
ϕ
)2
.

Consequently, the inequality (2.10) corresponds to the following one∫
Ω
M
∣∣∣ ϕ
M

∣∣∣2 − (∫
Ω
ϕ
)2

6
1
γ

∫
Ω
M
∣∣∣∇( ϕ

M

)∣∣∣2
which exactly is the inequality announced by the Lemma 2.10. �

Notice that it is possible to obtain a proof of this Poincaré-type in-
equality by contradiction, see for instance [18, p.7], or peraphs using the
hole-space case (for example for Ω = Rd) proved in H.J. Brascamp [4] (see
also Proposition 2.1 in [6]).

3. Statement of the main theorem

3.1. Definition of weak solution

When we consider the Fokker-Planck equation (1.1) with vector field F
decomposed as the sum F = κ+∇V where κ ∈ L∞(Ω) and eV ∈ L1(Ω), we
can introduce the maxwellian function M by M = eV∫

Ω
eV

and rewrite (1.1)

as div(ϕκ −M∇
(
ϕ
M

)
) = f . If we look for a solution with given average,

that is for instance a solution such that
∫

Ω ϕ = 1, then we can reduce
to the case where ϕ is free-average exchanging ϕ into ϕ −M and f into
f − div(M κ). We obtain the following problem

div(ϕκ−M∇
( ϕ
M

)
) = f in Ω,

with
∫

Ω
ϕ = 0.

Using the adapted spaces introduce in the previous part, the weak formu-
lation of this equation is written: find ϕ ∈ H1

M,0 such that for all ψ ∈ H1
M,0

(3.1)
∫

Ω
M∇
( ϕ
M

)
· ∇
(
ψ

M

)
−
∫

Ω
ϕκ · ∇

(
ψ

M

)
= 〈f, ψ〉

where 〈·, ·〉 denote the duality brackets between H−1
M and H1

M,0.
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3.2. Assumptions on the potential

In this article we are interested in the case where the vector fields F
quickly explodes near to the boundary. The fact that F is decomposed as a
sum of two terms makes it possible to describe all the “explosive” behavior
in the part ∇V . In addition to the fact that V equals −∞ on Γ to ensure
the explosion, the assumptions given on V (or on M , which is equivalent)
can be checked only in a neigborhood of the boundary Γ. More precisly in
order to use the lemmas proved we will use the following assumptions

(H1)


∃ a1 < 1

(
∇RM
M

)2
+ 2∇R

(
∇RM
M

)
> −a1

δ2
Γ
,

∇RM(0) = 0 and ∃ a2 > 0 ∇RM
M > a2,

∃ a3 > 0 ∇RM
∫
R

1
M < a3,

(H2) ∃ b > 0 |∇M | 6 1
b

M

δΓ
,

(H3) ∃γ > 0 ∇
(∇M
M

)
6 −γ Id,

where we recall that ∇R corresponds to the normal derivative,
∫
R

corre-
sponds to a linear integral along normal lines from the boundary Γ of Ω
and where δΓ represents the distance to Γ. Notice that we can rewrite these
assumptions in term of the potential V (wich is given with respect to the
maxwellian M by V = lnM), see for instance Theorem 3.3, page 239. It is
important to note that these assumptions are satisfied for the radial func-
tions M (i.e. functions depending only on the distance to the boundary)
on the following form near to the boundary

M(r) = rα with α > 1.

In other words, the result is shown for vector fields F whose the normal
component explodes like α

δΓ
with α > 1.

Remark 3.1. — As it was announced as introduction, an interesting case
corresponds to the following Fokker-Planck equation

−ε∆ϕ+ div(ϕF̃) = f,

making appear a small parameter ε. We can come back to the previous case
using F = 1

ε F̃. We note that if we define a Maxwellian M such that F =
∇M/M then the Maxwellian M̃ adapted to F̃, i.e. such that F̃ = ∇M̃/M̃ ,
satisfies M = C M̃1/ε. The assumptions on M can thus be interpreted
on M̃ and we show that they are less constraining in the following sense:
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they are checked when the normal component of F̃ behave like α
δΓ

for all
α > ε.

Concerning the assumption on the “interior” part κ of F = κ+∇V , that
is about κ ∈ L∞(Ω), we can note that this assumption is stronger than
that announced by J. Droniou in [7]. In fact, we will see during the proof
that the regularity required on κ comes from a product lemma. Roughly
speaking, if the product of a function H1(Ω) by a function Lp(Ω) is a
function L2(Ω) then the theorem is true as soon as κ belongs to Lp(Ω).
In the classical case the usual Sobolev injections H1(Ω) ⊂ L2d/(d−2) imply
that p = d∗ is sufficient. In our case the injections of “Sobolev” type (see
the Lemma 2.5) are not also “generous” and a product H1

M × Lp(Ω) will
not belong to L2(Ω) for as many values of p. We can possibly improve the
result of the theorem by taking κ ∈ Lp(Ω) with p > d+ 1/b.

3.3. Main theorem

We prove in Part 4 the following theorem.

Theorem 3.2. — Let Ω be a bounded domain of Rd, d > 2. We denote
by Γ its boundary which is assumed to be of class C2. Let f ∈ H−1

M and
F = κ+∇V where κ ∈ L∞(Ω) and V ∈ C∞(Ω) satisfies V = −∞ on Γ. If
the assumptions (H1), (H2) and (H3) hold then the problem (3.1) admits
a unique solution ϕ ∈ H1

M,0.

We can deduce - see the link between a free-average solution and a so-
lution with given average on Subsection 3.1 - the following theorem where
we recall all the assumptions

Theorem 3.3. — Let Ω be a bounded domain of Rd, d > 2. We denote
by Γ its boundary which is assumed to be of class C2. Let f ∈ H−1

M and
F = κ+∇V where κ ∈ L∞(Ω) and V ∈ C∞(Ω) satisfies V = −∞ on Γ. If
we assume that, in a neigborhood of the boundary Γ, we have

(H1)


∃ a1 < 1

(
∇RV

)2
+ 2∇2

RV > −a1
δ2

Γ
,

∇RV eV = 0 on Γ and ∃ a2 > 0 ∇RV > a2,

∃ a3 > 0 ∇RV eV
∫
R
e−V < a3,

(H2) ∃ b > 0 |∇V | 6 b

δΓ
,

(H3) ∃ γ > 0 ∇2V 6 −γ Id,
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where ∇R corresponds to the normal derivative, where
∫
R

corresponds to a
linear integral along normal lines from the boundary Γ of Ω and where δΓ
represents the distance to Γ, then there exists a unique (weak) solution of
the Fokker-Planck equation

−∆ϕ+ div(ϕF) = f in Ω,

such that
∫

Ω ϕ = 1.

4. Proof of the Theorem 3.2

4.1. Existence proof in Theorem 3.2

Principle for the existence proof of Theorem 3.2. — The maxwellian M
satisfying the assumptions (H1), (H2) and (H3), we use the different lem-
mas proved in Part 2. For instance, using the equivalence between the
norms ‖ · ‖H1

M
and ‖ · ‖H1

M,0
on the space H1

M,0, see Lemma 2.10, the op-
erator −div

(
M∇
( ·
M

))
is coercive on H1

M,0 thus we can (see for instance
the Lax-Milgram theorem) prove that there exists a weak solution (that is
belonging to H1

M,0) to equations like

−div
(
M∇
( ψ
M

))
= f

as soon as the source term f belongs in H−1
M . Moreover in this case we have

‖ψ‖H1
M

. ‖f‖H−1
M

.

Because of the non-coercivity of the operator −div
(
M∇
( ·
M

))
+div(·κ),

we start by studying an approach problem. For each n ∈ N, let us consider
the application Tn : r ∈ R 7→ max(min(r, n),−n) ∈ R and let us denote
by Fn the following application: Fn : ψ̃ ∈ L2

M 7→ ψ ∈ H1
M,0 ⊂ L2

M where ψ
is the weak solution of

(4.1) − div
(
M∇
( ψ
M

))
= f − div

(
MTn

( ψ̃
M

)
κ
)
.

For ψ̃ ∈ L2
M we have MTn(ψ̃/M) ∈ L2

M and since (5) κ ∈ L∞(Ω) we get
div
(
MTn
(
ψ̃
M

)
κ
)
∈ H−1

M . The function Fn is then well defined.

(5) Here the assumption on κ is essential. Following the proof of J. Droniou [7] it is
possible to improve this assumption using the Sobolev injection 2.5 more finely. See
discussion concerning the assumptions on κ page 239.
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Let us prove that Fn is a compact application by showing that its im-
age Fn(L2

M ) is bounded in H1
M . Consider ψ = Fn(ψ̃) ∈ Fn(L2

M ). Taking ψ
as a test function in the weak formulation of the equation (4.1) we obtain∫

Ω
M
∣∣∣∇( ψ

M

)∣∣∣2 = 〈f, ψ〉+
∫

Ω
MTn

( ψ̃
M

)
κ · ∇
( ψ
M

)
.

In other words, by using the duality definition and the Cauchy-Schwarz
inequality, we have

‖ψ‖2H1
M,0

. ‖ψ‖H1
M,0

+ ‖κ‖L∞(Ω)

√∫
Ω
M
∣∣∣Tn( ψ̃

M

)∣∣∣2√∫
Ω
M
∣∣∣∇( ψ

M

)∣∣∣2.
Using the fact successively that for all r ∈ R we have |Tn(r)| 6 n and that∫

Ω M = 1 we deduce that

‖ψ‖2H1
M,0

. ‖ψ‖H1
M,0

+ n‖κ‖L∞(Ω)‖ψ‖H1
M,0

.

Consequently we have

‖Fn(ψ̃)‖H1
M

= ‖ψ‖H1
M,0

. 1 + n‖κ‖L∞(Ω).

Thus, the image of L2
M by the application Fn is contained in the ball of H1

M

of radius 1 + n‖κ‖L∞(Ω) (up to a multiplicative constant depending on Ω,
which appears in the symbol .). Moreover, the injection H1

M ↪→ L2
M is

compact (see Lemma 2.4) and the application Fn is clearly continuous.
Applying the Schauder fixed point theorem, we conclude that the applica-
tion Fn admits a fixed point, denoted by ψn, in L2

M . This fixed point is
consequently a solution of

(4.2)
∫

Ω
M∇
(ψn
M

)
· ∇
( ϕ
M

)
−
∫

Ω
MTn

(ψn
M

)
κ · ∇
( ϕ
M

)
= 〈f, ϕ〉

for all test functions ϕ ∈ H1
M,0. The continuation of the proof consists of

obtaining estimates on these functions ψn in order to be able to pass to the
limit when n tends to +∞.

Estimate of M ln(1+|ψn/M |) in H1
M,0-norm. — Let ξ be the application

from R to R defined by ξ(r) =
∫ r

0
ds

(1+|s|)2 . This application is continuous,
piecewise-C1 and with a bounded derivative. According to Lemma 2.7 we
can choose ϕ = Mξ(ψn/M) −M

∫
Ω Mξ(ψn/M) as a test function in for-

mulation (4.2). • The first of the three terms obtained is treated in the
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following way

(4.3)

∫
Ω
M∇
(ψn
M

)
· ∇
(
ξ
(ψn
M

))
=
∫

Ω
M

∣∣∣∇(ψnM )∣∣∣2(
1 +
∣∣∣ψnM ∣∣∣)2

=
∥∥∥M ln

(
1 +
∣∣∣ψn
M

∣∣∣)∥∥∥2

H1
M,0

.

For the second term we obtain∣∣∣ ∫
Ω
MTn

(ψn
M

)
κ · ∇
(
ξ
(ψn
M

))∣∣∣ = ∣∣∣ ∫
Ω

MTn

(
ψn
M

)
1 +
∣∣ψn
M

∣∣ κ · ∇
(
ψn
M

)
1 +
∣∣ψn
M

∣∣ ∣∣∣
6 ‖κ‖L∞(Ω)

∫
Ω

∣∣∣ Tn(ψnM )
1 +
∣∣ψn
M

∣∣ ∣∣∣M ∣∣∣∇(ln
(

1 +
∣∣∣ψn
M

∣∣∣))∣∣∣.
Using the fact that for all r ∈ R, we have |Tn(r)| 6 |r|, we deduce that(6)

(4.4)
∣∣∣ ∫

Ω
MTn

(ψn
M

)
κ · ∇
(
ξ
(ψn
M

))∣∣∣ . ∥∥∥M ln
(

1 +
∣∣∣ψn
M

∣∣∣)∥∥∥
H1
M,0

.

For the last term, using f ∈ H−1
M , we deduce

(4.5)

∣∣〈f, ϕ〉∣∣ . ‖ϕ‖H1
M,0

=

√∫
Ω
Mξ′
(ψn
M

)
∇
(ψn
M

)

=

√√√√∫
Ω
M

∣∣∇(ψnM )∣∣2(
1 +
∣∣ψn
M

∣∣)2 =
∥∥∥M ln

(
1 +
∣∣∣ψn
M

∣∣∣)∥∥∥
H1
M,0

.

The three estimates (4.3), (4.4) and (4.5) enable us to obtain for all n ∈ N

(4.6)
∥∥∥M ln

(
1 +
∣∣∣ψn
M

∣∣∣)∥∥∥
H1
M,0

. 1.

Estimate of µ({Q ∈ Ω ; |ψn(Q)| > kM(Q)}). — In this paragraph,
we control the size of the set where ψn has a large value, that is the set
Ek = {Q ∈ Ω ; |ψn(Q)| > kM(Q)} for k ∈ N. The natural measure in
the present context is the measure dµ = M(Q)dQ (dQ being the classical
Lebesgue measure on Ω ⊂ Rd), which enables to take into account the
weight of the Maxwellian M .

(6) We also use the Cauchy-Schwarz inequality to show that∫
Ω
Mf 6

√∫
Ω
M

√∫
Ω
Mf2 =

√∫
Ω
Mf2.
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Writing Ek = {Q ∈ Ω ; (ln(1 + |ψn(Q)/M(Q)|))2 > (ln(1 + k))2} we
obtain∫

Ω
M
(

ln(1+
∣∣∣ψn
M

∣∣∣))2
=
∫
Ek
M
(

ln(1+
∣∣∣ψn
M

∣∣∣))2
+
∫

Ω\Ek
M
(

ln(1+
∣∣∣ψn
M

∣∣∣))2
.

We easily deduce the following estimate∫
Ω
M
(

ln(1 +
∣∣∣ψn
M

∣∣∣))2
>
∫
Ek
M
(

ln(1 +
∣∣∣ψn
M

∣∣∣))2
>
∫
Ek
M(ln(1 + k))2.

Introducing the measure dµ = M(Q)dQ this inequality is also rewritten

µ(Ek) 6
1

(ln(1 + k))2

∥∥∥M ln
(

1 +
∣∣∣ψn
M

∣∣∣)∥∥∥2

L2
M

.

Taking into account the estimate (4.6), the previous equation is written

(4.7) µ({Q ∈ Ω ; |ψn(Q)| > kM(Q)}) .
1

(ln(1 + k))2 .

Estimate of MSk(ψn/M) in H1
M,0-norm. — Recall that for k ∈ N the

application Tk is given by Tk : r ∈ R 7→ max(min(r, k),−k) ∈ R. We now
define the application Sk such that Tk + Sk = id. To obtain an estimate
on ψn we successively obtain an estimate on MSk(ψn/M) and then on
MTk(ψn/M) for a sufficiently large k ∈ N.

Let k ∈ N. Taking ϕ = MSk(ψn/M) − M
∫

Ω MSk(ψn/M) as a test
function test in (4.2). According to Lemma 2.7, this choice is possible and
we obtain∫

Ω
M∇
(ψn
M

)
· ∇
(
Sk

(ψn
M

))
︸ ︷︷ ︸

A

−
∫

Ω
MTn

(ψn
M

)
κ · ∇
(
Sk

(ψn
M

))
︸ ︷︷ ︸

B

= 〈f, ϕ〉︸ ︷︷ ︸
C

.

Since Sk + Tk = id and for all r ∈ R we have S′k(r) = 0 or T ′k(r) = 0 we
deduce that the first term A is written

(4.8) A =
∫

Ω
M
∣∣∣∇(Sk(ψn

M

))∣∣∣2 =
∥∥∥MSk

(ψn
M

)∥∥∥2

H1
M,0

.

Using the fact that for all r ∈ R we have |Tn(r)| 6 |r| and using the Cauchy-
Schwarz inequality, we estimate the second term B in the following way

|B| 6 ‖κ‖L∞(Ω)

√∫
Ω

|ψn|2
M

√∫
Ω
M
∣∣∣∇(Sk(ψn

M

))∣∣∣2.
However |ψn/M | = |Tk(ψn/M) + Sk(ψn/M)| 6 k + |Sk(ψn/M)| thus
|ψn/
√
M | 6 k

√
M +

√
M |Sk(ψn/M)| and using the triangular inequality
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we obtain√∫
Ω

|ψn|2
M

6

√∫
Ω
k2M +

√∫
Ω
M
∣∣∣Sk(ψn

M

)∣∣∣2 = k +
∥∥∥MSk

(ψn
M

)∥∥∥
L2
M

.

Since Sk(r) = 0 for |r| < k, we can estimate this last term as follows:∥∥∥MSk

(ψn
M

)∥∥∥2

L2
M

=
∫

Ω
M
∣∣∣Sk(ψn

M

)∣∣∣2 =
∫
Ek
M
∣∣∣Sk(ψn

M

)∣∣∣2,
where we recall that Ek = {Q ∈ Ω ; |ψn(Q)| > kM(Q)}. According to the
Hölder inequality, for all p > 1, denoting by q the conjugate of p (i.e. such
that 1

p + 1
q = 1) and using the estimate (4.7), we obtain∥∥∥MSk

(ψn
M

)∥∥∥2

L2
M

6
(∫
Ek
M
)1/q(∫

Ek
M
∣∣∣Sk(ψn

M

)∣∣∣2p)1/p

.
1

(ln(1 + k))2/q

(∫
Ω
M
∣∣∣Sk(ψn

M

)∣∣∣2p)1/p
.

We thus control the L2
M -norm of MSk(ψn/M) using his L2p

M -norm . But
this L2p

M -norms can itself be controlled, for an adapted value of p by theH1
M -

norm. In fact, using the weighted Sobolev embedding (see Lemma 2.5) there
exists p > 1 for which we have the inequality(∫

Ω
M
∣∣∣Sk(ψn

M

)∣∣∣2p)1/p
.
∥∥∥MSk

(ψn
M

)∥∥∥2

H1
M

.
∥∥∥MSk

(ψn
M

)∥∥∥2

H1
M,0

+
∥∥∥MSk

(ψn
M

)∥∥∥2

L2
M

.

We deduce a control on the L2
M -norm of MSk(ψn/M) using his H1

M,0-norm:(
1− 1

(ln(1 + k))2/q

)∥∥∥MSk

(ψn
M

)∥∥∥2

L2
M

.
1

(ln(1 + k))2/q

∥∥∥MSk

(ψn
M

)∥∥∥2

H1
M,0

,

that is a control of the form
∥∥MSk

(
ψn/M

)∥∥
L2
M

6 A(k)
∥∥MSk

(
ψn/M

)∥∥
H1
M,0

where A(k) tends to 0 when k tends to +∞. Hence, we obtain the following
estimate for the term B of the left hand side of equation (4.1):

(4.9) |B| 6 ‖κ‖L∞(Ω)

(
k +A(k)

∥∥∥MSk

(ψn
M

)∥∥∥
H1
M,0

)∥∥∥MSk

(ψn
M

)∥∥∥
H1
M,0

.

The last term of the equation (4.1) is controlled as follow

(4.10)
|C| = |〈f, ϕ〉| . ‖ϕ‖H1

M,0
=

√∫
Ω
M
∣∣∣∇( ϕ

M

)∣∣∣2
.

√∫
Ω
M
∣∣∣∇(Sk( ϕ

M

))∣∣∣2 =
∥∥∥MSk

(ψn
M

)∥∥∥
H1
M,0

.
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The previous estimates (4.8), (4.9) and (4.10) enable the deduction, from
equation (4.1), for all k ∈ N, of the following inequality∥∥∥MSk

(ψn
M

)∥∥∥
H1
M,0

. ‖κ‖L∞(Ω)

(
k +A(k)

∥∥∥MSk

(ψn
M

)∥∥∥
H1
M,0

)
+ 1.

Since A(k) tends to 0 when k tends to +∞, it possible to obtain for a
sufficiently large k, the inequality

(4.11)
∥∥∥MSk

(ψn
M

)∥∥∥
H1
M,0

. 1.

Estimate of MTk(ψn/M) in H1
M,0-norm. — Choose now

ϕ = MTk(ψn/M)−M
∫

Ω
MTk(ψn/M)

as a test function in equation (4.2) (according to Lemma 2.7 we have ϕ ∈
H1
M,0). As for the estimate of MSk(ψn/M), we study each of three terms,

named A, B and C as previously, present in equation (4.2).
The first is written

A =
∫

Ω
M
∣∣∣∇(Tk(ψn

M

))∣∣∣2 =
∥∥∥MTk

(ψn
M

)∥∥∥2

H1
M,0

.

For the second term, we proceed as follow:

|B| 6 ‖κ‖L∞(Ω)

∫
Ω
M
∣∣∣Tn(ψn

M

)∣∣∣|∇(Tk(ψn
M

))
|

6 ‖κ‖L∞(Ω)

∫
Ω
|ψn||∇

(
Tk

(ψn
M

))
|.

But for |ψn/M | > k we have ∇(Tk(ψn/M)) = 0 whereas for |ψn/M | < k we
clearly have |ψn| < kM and consequently, according to the Cauchy-Schwarz
inequality we obtain

|B| 6 ‖κ‖L∞(Ω)

∫
Ω
kM
∣∣∣∇(Tk(ψn

M

))∣∣∣
6 ‖κ‖L∞(Ω)

√∫
Ω
k2M

√∫
Ω
M
∣∣∣∇(Tk(ψn

M

))∣∣∣2
6 k‖κ‖L∞(Ω)

∥∥∥MTk

(ψn
M

)∥∥∥
H1
M,0

.

The last term is treated like those of the previous estimates:

|C| = |〈f, ϕ〉| .
∥∥∥MTk

(ψn
M

)∥∥∥
H1
M,0

.
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These three estimates give (note that this estimate depends on k, but that k
has been fixed)

(4.12)
∥∥∥MTk

(ψn
M

)∥∥∥
H1
M,0

. 1.

Estimate of ψn in H1
M,0. — Since for all k ∈ N we have Sk + Tk = id

we obtain

‖ψn‖H1
M,0

=
∥∥∥MSk

(ψn
M

)
+MTk

(ψn
M

)∥∥∥
H1
M,0

6
∥∥∥MSk

(ψn
M

)∥∥∥
H1
M,0

+
∥∥∥MTk

(ψn
M

)∥∥∥
H1
M,0

.

Using the estimates (4.11) and (4.12) we deduce that for all n ∈ N we have

(4.13) ‖ψn‖H1
M,0

. 1.

Convergence of the sequence {ψn}n∈N. — According to the estimate
(4.13) the sequence {ψn}n∈N is bounded in H1

M,0. According to the Lemma
2.4 a subsequence of the sequence {ψn}n∈N (always denoted by {ψn}n∈N)
admits a limit ψ, weak in H1

M,0 and strong in L2
M . In order to perform the

limit in equation (4.2), it is sufficient to prove that the sequence

{MTn(ψn/M)}n∈N

tends to ψ in L2
M . We obtain∥∥∥MTn

(ψn
M

)
− ψ
∥∥∥2

L2
M

6
∥∥∥MTn

(ψn
M

)
−MTn

( ψ
M

)∥∥∥2

L2
M

+
∥∥∥MTn

( ψ
M

)
− ψ
∥∥∥2

L2
M

.

However the application T : R→ R is 1-lipschitz and we have∥∥∥MTn

(ψn
M

)
−MTn

( ψ
M

)∥∥∥2

L2
M

=
∫

Ω
M
∣∣∣Tn(ψn

M

)
− Tn
( ψ
M

)∣∣∣2
6
∫

Ω
M
∣∣∣ψn
M
− ψ

M

∣∣∣2 = ‖ψn − ψ‖2L2
M
,

which proves that ‖MTn(ψn/M)−MTn(ψ/M)‖L2
M

tends to 0 when n tends
to +∞. As regards the other term, the Lebesgue convergence dominated
theorem directly affirms that ‖MTn(ψ/M)−ψ‖L2

M
also tends to 0 when n

tends to +∞. Finally, it was shown that the sequence {MTn(ψn/M)}n∈N
converges to ψ in L2

M and consequently that ψ is a solution of∫
Ω
M∇
( ψ
M

)
· ∇
( ϕ
M

)
−
∫

Ω
ψκ · ∇

( ϕ
M

)
= 〈f, ϕ〉 ∀ϕ ∈ H1

M,0.
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4.2. Uniqueness proof in Theorem 3.2

Main steps for the uniqueness proof. — To prove uniqueness, we proceed
as follows: We start by introducing the dual problem. It is shown that this
dual problem admits a solution by using the Schauder topological degree
method. Then, by using the existence both problem and its dual, we deduce
uniqueness from these two problems.

Introduction of the dual problem. — For g ∈ H−1
M let us consider the

elliptic partial differential equation

(4.14) − div
(
M∇
( φ
M

))
−Mκ · ∇

( φ
M

)
= g on Ω

and we look for a solution φ ∈ H1
M,0 to this equation.

A compact application for the dual problem. — For φ̃ ∈ H1
M,0 we have

Mκ ·∇(φ̃/M) ∈ L2
M ⊂ H

−1
M since ‖Mκ ·∇(φ̃/M)‖L2

M
6 ‖κ‖L∞(Ω)‖φ̃‖H1

M,0
.

Since the operator ϕ 7→ −div(M∇(ϕ/M)) is coercive in H1
M,0, there exists

thus a unique solution φ = G(φ̃) ∈ H1
M,0 such that for all ϕ ∈ H1

M,0

(4.15)
∫

Ω
M∇
( φ
M

)
· ∇
( ϕ
M

)
−
∫

Ω
ϕκ · ∇

( φ̃
M

)
= 〈g, ϕ〉.

This defines an application G : H1
M,0 → H1

M,0. It is quite easy to
see that G is continuous; indeed, if φ̃n tends to φ̃ in H1

M,0 then Mκ ·
∇(φ̃n/M) tends to Mκ · ∇(φ̃/M) in H−1

M (more precisely in L2
M ). Thus

div(M∇(φn/M)) tends to div(M∇(φ/M)) which implies that φn = G(φ̃n)
tends to φ = G(φ̃) in H1

M,0.
We will now prove that G is a compact operator. Suppose that the se-

quence {φ̃n}n∈N is bounded in H1
M,0; then {Mκ ·∇(φ̃n/M)}n∈N is bounded

in H−1
M so that, using ϕ = G(φ̃n) = φn as a test function in the equation

satisfied by φn, we get using the Lemma 2.10

‖φn‖2H1
M,0

.
(

1 +
∥∥∥Mκ · ∇( φ̃n

M

)∥∥∥
H−1
M

)
‖φ̃n‖H1

M,0
,

which implies that the sequence {φn}n∈N is bounded in H1
M,0. Using the

Lemma 2.4, up to a subsequence, we can thus suppose that {φn}n∈N con-
verges a.e. on Ω and is bounded in L2

M . Let (n,m) ∈ N2; subtract the equa-
tion satisfied by φm to the equation satisfied by φn and use ϕ = φn − φm
as a test function, this gives using the Lemma 2.10 again

‖φn − φm‖2H1
M,0

6
∣∣∣ ∫

Ω
(φn − φm)κ · ∇

( φ̃n − φ̃m
M

)∣∣∣ . ‖φn − φm‖L2
M
.
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From the strong convergence of {φn}n∈N to φ in L2
M we deduce that the

sequence {φn}n∈N is a Cauchy sequence in H1
M,0 and converges in this

space. We deduce that the application G is compact.

Existence result for the dual problem using the Leray-Schauder topolog-
ical degree. — According to the Leray-Schauder topological theory (see
the founder article of J. Leray and J. Schauder [16]) since the operator G
introduced with equation (4.15) is a compact operator, to prove that it has
a fixed point, we just have to find R > 0 such that for all s ∈ [0, 1] there
exists no solution of φ − sG(φ) = 0 satisfying ‖φ‖H1

M,0
= R. Let s ∈ [0, 1]

and suppose that φ ∈ H1
M,0 satisfies φ = sG(φ). We have for all ϕ ∈ H1

M,0

(4.16)
∫

Ω
M∇
( φ
M

)
· ∇
( ϕ
M

)
− s
∫

Ω
ϕκ · ∇

( φ
M

)
= 〈sg, ϕ〉.

Using the “non-dual” problem (see the existence proof of Theorem 3.2
where we obtain an existence solution of equation (4.2)), we know that for
all f ∈ H−1

M there exists at least one solution ψ ∈ H1
M,0 such that for all

ϕ ∈ H1
M,0

(4.17)
∫

Ω
M∇
( ψ
M

)
· ∇
( ϕ
M

)
− s
∫

Ω
ψκ · ∇

( ϕ
M

)
= 〈f, ϕ〉.

Moreover, according to estimate (4.13) there exists C1 ∈ R+ such that for
all f ∈ H−1

M with ‖f‖H−1
M

6 1 and for all s ∈ [0, 1] we have ‖ψ‖H1
M,0

6 C1.
We can verify that this constant C1 depends only on ‖f‖H−1

M
and can be

selected independently on the function f when ‖f‖H−1
M

6 1. In addition
according to the estimates obtained in the existence proof of Theorem 3.2
this constant C1 depends on ‖sκ‖L∞(Ω) 6 ‖κ‖L∞(Ω) and consequently the
constant C1 can also be selected independently of s.

By taking ϕ = φ in the equation (4.17) satisfied by ψ and ϕ = ψ in the
equation (4.16) satisfied by φ, we obtain

〈f, φ〉 = 〈sg, ψ〉 6 s‖g‖H−1
M
C1 6 ‖g‖H−1

M
C1 := C2.

Since this inequality is satisfied for all f ∈ H−1
M such that ‖f‖H−1

M
6 1, we

deduce that ‖φ‖H1
M,0

6 C2.
Now take R = C2 + 1. We have just proven that, for any s ∈ [0, 1],

any solution of φ − sG(φ) = 0 satisfies ‖φ‖H1
M,0

< R; thus by the Leray-
Schauder topological degree theory, the application G has a fixed point,
that is to say a solution of (4.15).

Uniqueness. — Since the equation (3.1) is linear, it is sufficient to prove
that the only solution of (3.1) without source term, i.e. taking f = 0, is
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the null function. Let ψ be a solution of (3.1) with f = 0 and let φ be a
solution of (4.14) with g = sign(ψ) ∈ H−1

M . By putting ϕ = φ as a test
function in the equation (3.1) satisfied by ψ and ϕ = ψ as a test function in
the weak formulation of the equation (4.14) satisfied by φ, we respectively
get ∫

Ω
M∇
( ψ
M

)
· ∇
( φ
M

)
−
∫

Ω
ψκ · ∇

( φ
M

)
= 0 and∫

Ω
M∇
( φ
M

)
· ∇
( ψ
M

)
−
∫

Ω
ψκ · ∇

( φ
M

)
= 〈sign(ψ), ψ〉.

We deduce that 〈sign(ψ), ψ〉 = 0, that is to say
∫

Ω |ψ| = 0 and then ψ = 0.

Remark 4.1. — A similar reasoning gives the uniqueness of the solution
of the dual problem (4.15).

5. Application to fluid mechanics

5.1. The FENE model for dilute polymers

A natural framework where vectors fields strongly explode at the bound-
aries of a domain is the framework of the modeling of the spring whose
extension is finite (that is physically realist). In fluid mechanics, such an
approach is used to develop polymer models in solution. It is this point of
view which we have chooses to present in order to illustrate the preceding
theoretical study.

The simplest micro-mechanical approach to model the polymer molecules
in a dilute solution is the dumbbell model in which the polymers are rep-
resented by two beads connected by a spring. The configuration vector Q
describes the orientation and the elongation of such a dumbbell [15, 17].
The force of the spring is governed by some law that should be derived from
physical arguments. We choose here the popular FENE model, in which the
maximum extensibility of the dumbbell is fixed at some value determined
by the dimensionless parameter ` and the spring force takes the simple
form

E(Q) = Q
1− |Q|2/`2 .

The configuration vector Q depends on time t and macroscopic position of
the dumbbell x in the flow. Moreover, it satisfies the following stochastic
differential equation (see [21] for details):

(5.1) dQ =
(
(∇u)T ·Q− 1

2De
E(Q)

)
dt+
√

1
2De

dW,
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where the 2-tensor (∇u)T is the transposed velocity gradient, De is a di-
mensionless number called the Deborah number (linked to the relaxation
time of the fluid) and W is the Wiener random process that accounts for
the Brownian forces acting on each bead. Equation (5.1) should be under-
stood as the Itô ordinary stochastic differential equations along the particle
paths since the dumbbells’centers of mass are supposed on average to follow
the particules of the solvent fluid.

As is well known (see Section 3.3 of [21]), every Itô ordinary stochastic dif-
ferential equation can be associated with a partial differential equation for
the probability density function ϕ(t,x,Q) of the random process Q(t,x). In
particular, equation (5.1) implies the following, also called Fokker-Planck,
equation for ϕ(t,x,Q):

(5.2) ∂ϕ

∂t
+ u · ∇xϕ = 1

2De
∆Qϕ− divQ

(
ϕ
(

(∇u)T ·Q− 1
2De

E
))
.

Flow

Physical domain

Figure 5.1. On the left, we have drawn the physical domain of a real
flow for a diluted polymers solution. From the microscopic point of
view, the polymer chains are identified to independent mass-springs
systems (called dumbbells). The orientation and the length of each
dumbbell is governed by a quantity (denoted by ϕ in this paper) dis-
tributed in a ball whose radius corresponds to the maximum extension
of the spring. On the right, the colors correspond to the various proba-
bilities that dumbbell be in the given position. For instance, the drawn
dumbbell is the dumbell which has the most chance to be present (with
its “symmetrical” compared to the center of the ball).

In certain modes the dominating terms correspond to the terms of the
right-hand side member of equation (5.2). It is the case, for instance, when
the flow is supposed to be thin, see [5]. In these configurations, the dis-
tribution ϕ can be seen like depending only on Q (to be rigorous, ϕ also
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depends on time t and on the macroscopic position x, via the presence
of the gradient ∇u(t,x) but these dependences can be seen as parame-
ters) and the equation (5.2) is approached by the following Fokker-Planck
equation on ϕ(Q):

(5.3) −∆ϕ+ div(ϕF) = 0 in B(0, `),

with F = 2De (∇u)T · Q − E. It exactly corresponds to those studied in
the first part of this paper (see equation (1.1)) in the case Ω = B(0, `) and
without source term: f = 0. Although it is wished that the solution ϕ(Q)
cancels for values Q such that |Q| = ` (i.e. we wishe that the maximum
length of the springs is ` and that there is no spring of this length), the
classical framework of the Theorem 1.2 does not correspond to this equation
provided with the homogeneous Dirichlet boundary conditions. In fact,
the force F is not sufficiently regular: we have F /∈ Ld(B(0, `)). Roughly
speaking, the FENE model takes into account the finite extensibility of
the polymer chain, through an important explosive force when |Q| tends
to `. On the other hand, this force F perfectly corresponds to the principal
result shown in this article (see Theorem 3.3). More precisely, the vector
field Q ∈ B(0, `) 7→ 2De (∇u)T ·Q is clearly bounded and we can write the
“explosive” term E as follow:

E = −∇V with V (Q) = `2

2
ln
(

1− |Q|
2

`2

)
.

To make appear the maxwellian function M as it is used in this paper, we
write

(5.4) M(Q) = eV (Q)∫
Ω e

V (R)dR
=

(
1− |Q|2/`2

)`2/2

∫
B(0,`)

(
1− |R|2/`2

)`2/2
dR

.

From Theorem 3.3 we deduce that if ` >
√

2 then for any ρ ∈ R there
exists a unique (weak) solution of the Fokker-Planck equation (5.3) such
that
∫
B(0,`) ϕ = ρ. According to H.C. Öttinger [21], the number ` roughly

measures the number of monomer units represented by a bead and it is
generally larger than 10. The assumption ` >

√
2 is not constraining from

the physical point of view. In fact, according to H.C. Öttinger [21], the
number ` roughly measures the number of monomer units represented by
a bead and it is generally larger than 10. Moreover, impose the quantity∫
B(0,`) ϕ physically corresponds to given the density of the polymer chains.

Hence this condition is relevant for the studied problem.
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Remark 5.1. — If the tensor (∇xu)T is replaced by its anti-symmetric
part 1

2 (∇xu − (∇xu)T ) in the force term F then we get the so-called co-
rotational FENE model. This case corresponds to a particular cases pre-
sented page 219: ϕ = M is a trivial solution of equation (5.3) (see [5, 18]).

5.2. Numerical results

In this subsection, we present numerical result for the Fokker-Planck
equation (1.1) for a confinement vector field F coupled with the normal-
ization condition

∫
Ω ϕ = ρ, ρ ∈ R, and then we apply the algorithm in the

framework of fluid mechanics. The main difficulty to obtain a numerical
scheme for the Fokker-Planck equation within the normalized condition is
to treat this normalized condition since the equation is not numerically
difficult itself. Precisly, this condition is implemented by penalization. For
simulation, we use the FreeFem++ program(7) which is based on weak
formulation of the problem and finite elements method. In the fluid me-
chanics context, we want to observe the distribution of the orientation
dumbells in a dilute polymer under shear (for instance with a given sta-
tionary velocity flow given of the form u(x1, x2) = (γ̇ x2, 0), γ̇ ∈ R, in
the 2-dimensional case). For simplicity, we make the presentation with the
2-dimensional model. According to the previous subsection, the searched
distribution satisfies the following Fokker-Planck equation

(5.5) −∆ϕ+ div(ϕF) = 0 on B(0, `),

where the vector field F is given by

F :
(
Q1
Q2

)
∈ B(0, `) 7−→ 2De γ̇

(
Q2
0

)
− 1

1− |Q|2/`2

(
Q1
Q2

)
.

Moreover, the solution must be satisfy the relation
∫
B(0,`) ϕ = ρ. Notice

that if we have a solution such that
∫
B(0,`) ϕ = 1 then, by linearity, the

function ϕ = ρϕ is a solution such that
∫
B(0,`) ϕ = ρ. In the numerical test,

we always take ρ = 1. The only two parameters which are interest are the
product De γ̇ and the coefficient ` which corresponds to the maximal elon-
gation of the dumbells. Without shear (that is for γ̇ = 0), a trivial solution
of the Fokker-Planck equation (5.5) exists: it is the maxwellian M (see its
expression (5.4)). For three characteristic maximal lenghts of the dumbells
(` = 2, ` = 5 and ` = 10), we have been represented this maxwellian on
the figure 5.2.

(7) see http://www.freefem.org/ff++
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Figure 5.2. Solution without shear for different maximal lengths of
dumbells: ` = 2, ` = 5 and ` = 10.

To observe the influence of the shear on the distribution, taking De = 10,
` = 5 and different values of the shear coefficient γ̇ ∈ {0.1; 0.2; 0.5; 1}. The
for results are descibe on figure 5.3.

Figure 5.3. Shear influence on the distribution of the length of dumb-
ells. The more the shear is raised, the more the dumbbells tend to
lengthen in the direction of the flow. The four figures above corre-
spond (from left to right) to the values γ̇ = 0.1, γ̇ = 0.2, γ̇ = 0.5 and
γ̇ = 1.
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