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THE FENE MODEL FOR VISCOELASTIC THIN FILM FLOWS∗

LAURENT CHUPIN†

Abstract. In this article, we are interested in the behavior of the FENE (Finitely Extensible
Non-Linear Elastic), a constitutive relation within an almost shear flow. As this relation results
from a microscopic analysis of the polymer chains, the study presented here is based on new results
from the Fokker-Planck equation. Thin flows are generally considered like almost one-dimensional
flows and almost shear flows. The study of the FENE model makes it possible to understand which
could be the dominant terms in the equations coupling this rheology (the FENE model) and the
hydrodynamic (via the conservation equations). Some possible examples of applications are given at
the end of this article, for example, in the field of lubrication, the phenomena of boundary layers,
the industry of the nanotechnology, biology or Shallow-Water equations.
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1. Introduction.

Intentions - A constitutive relation for basic fluid mechanics gives a relation
between the rate of deformation and the constraint. The simplest of these relations
are obtained in an empirical way using comparisons with experiments. Certain
relations are also justified by analogies with mechanical relations of macroscopic
models. Other relations, more recent, utilize microscopic behavior. In all these
cases, we can raise the question to know if being given a velocity field u of a fluid,
is it simple to find the constraint σ? More precisely, the first object of the present
paper is to recall that the classical constitutive relations, and in particular the
multi-scale FENE equation, are well posed, i.e. that a unique constraint for each flow
velocity exists. Once this essential mathematical property have been checked, we are
interested in the behavior of this equation in a particular geometry which occurs in
very many mechanisms i.e. in thin flows. The applications are numerous and we can
legitimately ask the following question: can the relation obtained empirically for a
fluid be written in a simpler way when the fluid considered is present in a particular
geometry? Can we, in this case, deduce an explicit expression for the constraint
according to the velocity of the fluid? The answers to these questions are well-known
in the case of Newtonian fluids and they allow, according to the physical context, to
derive hydrodynamic thin film models. For example in the field of lubrication, the
Navier-Stokes equations can be rigorously approximated by the Reynolds equation
(see [2]). For a viscoelastic fluid like Oldroyd-B fluid, recent results (see [3]) show
that in a thin film the flow is managed by more simple equations (in particular from
a numerical point of view) than the Navier-Stokes-Oldroyd models usually obtained.

Mathematical formulations - Generally, the equations describing the hydrody-
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namics for incompressible fluid have the following conservation laws:

µ
∂ u

∂t
+ µ div(u ⊗ u) + ∇p = div(σ) and div(u) = 0 on R

+ × Ω. (1)

where u(t,x) is the velocity at time t ∈ R
+ and at position x ∈ Ω, Ω being a bounded

domain in R
d, (d ∈ {2, 3}), µ is the density of the fluid, σ corresponds to the stress

tensor and p corresponds to the pressure. To complete the mathematical formulation
of the balance laws, we need a constitutive relation relating the stress tensor σ to the
motion, for instance to the velocity u.

1) The constitutive relation for an incompressible Newtonian fluid is given by

σ = 2η D where D =
1

2

(
∇u + (∇u)T

)
. (2)

Notice that the stress σ should be a function of D (the symmetric part of the velocity
gradient) and not ∇u (the velocity gradient). This is due to the Principle of Material
Frame indifference, see [46]. Here η is a constant (η > 0) known as the viscosity and
it is clear that for each velocity field u ∈W 1,∞(Ω) such a stress σ is well defined and
we obtain σ ∈ L∞(Ω).

2) There are many ways to generalize this linear Newtonian model by the inclusion
of nonlinear terms. For instance, the so-called generalized Newtonian fluid for which
the extra stress is explicitly given with respect to the velocity by

σ = 2η(|D|) D, (3)

where η is a function. According to this function, we obtain for example the power-

law model: η(x) = mxn−1, the Yasuda-Carreau model given by η(x)−η∞
η0−η∞ = (1 +

(λx)a)(n−1)/a where m, n, λ, η∞, η0 and a are constants determined by experiments.
There again, it is clear that for each velocity field u ∈W 1,∞(Ω) we have σ ∈ L∞(Ω)
(on the condition of course that the function η is sufficiently regular, which is the case
for classical generalized Newtonian models).

3) In viscoelastic fluids, the stress does not only depend on the current motion of
the fluid, but also on the history of the motion. Such a behavior can be obtained by
macroscopic considerations. A classical way to introduce the rheological properties
of such a viscoelastic fluid is to compare any elementary fluid element to a mono-
dimensional mechanical system composed of springs and dash-pots (see [21]). For
example, the UCM Maxwell model is given by this constitutive relation

λ

(
∂ σ

∂t
+ u · ∇σ − (∇u) · σ − σ · (∇u)T

)
+ σ = 2η D. (4)

The quantity λ has the dimension of time and is known as a relaxation time. It
is, roughly speaking, a measure of the time for which the fluid remembers the flow
history. Popular models of this type are then obtained including the Giesekus model,
which adds a term proportional to σ2 to the left side of (4), the Phan-Thien-Tanner
model, which adds a term proportional to σTr(σ)... In all these cases, we can show
that for a regular given velocity field u, the stress tensor σ is well defined (that is it
exists and is unique), see for instance Chupin [11], Guillopé-Saut [20], Renardy [37].
For instance, if u ∈ C(0,+∞;W 1,∞(Ω)) then the solution σ of equation (4) belongs
to C(0,+∞;L∞(Ω)).
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4) Another way to model viscoelastic behavior is to use microscopic considera-
tions. A kinetic theory corresponding to a diluted solution of polymeric liquids also
gives some “constitutive relations” relating the stress tensor σ to the velocity field u.
The most famous model is the FENE model (Finite Extendible Nonlinear Elasticity)
in which a spring tension contribution and a bead motion contribution are added to
the Newtonian stress, whose the sum is given by (k and θ are two physical constants
which will be presented later)

σ(t,x) =

∫

B(0,Q0)

F(Q) ⊗ Qψ(t,x,Q)dQ− kθ

(∫

B(0,Q0)

ψ(t,x,Q)dQ

)
Id (5)

where B(0, Q0) is the open ball of R
3 centered at 0 of radius Q0 and F is the function

on B(0, Q0) defined by F(Q) = HQ

1−‖Q‖2/Q2
0

and where the function ψ satisfies the

following Fokker-Planck equation (the physical parameter ζ will be presented later
too)

∂ ψ

∂t
+ u · ∇xψ = −divQ

(
(∇xu)T · Qψ − 2

ζ
F(Q)ψ − 2kθ

ζ
∇Qψ

)
. (6)

Note that for this FENE model, the works of Bird and al. [7] (see also part 2.3 of this
paper) describe the stress behavior σ in a stationary state and for a homogeneous and
small velocity flow. This behavior was found more recently by P. Degond, M. Lemou
and M. Picasso [14].

Remark 1.1.

- These various models of viscoelastic fluids are more or less contained one in
another. Thus, taking F(Q) = HQ, H ∈ R

∗
+ in the Fokker-Planck equation (6) it is

possible to recover the UCM Maxwell model (4) for the stress tensor σ given by (5).
In the same way, taking λ = 0 in the UCM Maxwell model (4) we obtain a Newtonian
fluid. The model (5)-(6) is then the most general type.

- We can also see this hierarchy of models like an increasingly precise description
of the flows: from the macroscopic global description of a Newtonian flow whose linear
relation was discovered about 1687 by Newton to the microscopic description of recent
models.

It is important to observe that for any function F, the equation (6) can be writen
in a non-dimensional form (i.e. introducing the Deborah number De, see the next
part) as

∂ ψ

∂t
+ u · ∇xψ − 1

2De divQ

(
M(Q)∇Q

(
ψ

M(Q)

))
+ divQ

(
(∇xu)T ·Q)ψ

)
= 0 (7)

where M is a Maxwellian function depending on F.

Main steps of this paper - The first goal of this paper is to give a rigorous proof
that for each velocity field u a unique constraint σ to the FENE model exists, and
then to show that for an almost laminar flow, the behavior of this solution corresponds
to the stationary solutions describe by Bird et al. [7]. This article is composed of the
following parts1:

1A short version of this paper was submitted in a note in december, 2007. See [12]
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1. Description of the FENE model. We first write the FENE model with its
physical parameters then we put it in a non-dimensional form introducing
the Deborah (or Weissenberg) number De. We also indicate how to write the
Fokker-Planck equation (6) in the form of the equation (7) and we give some
cases where an exact expression of the solution is known.

2. Existence and uniqueness for a solution ψ(Q) to an elliptic partial differential
equation

− 1

2De divQ

(
M(Q)∇Q

(
ψ

M(Q)

))
+ divQ (ψκ(Q)) = f(Q) (8)

on a ball B = B(0, Q0) ⊂ R
d and satisfying

∫
B
ψ(Q)dQ = ρ where ρ ∈ R, κ

is a bounded application from B to R
d and M is a smooth function from B

to R satisfying 0 < M ≤ 1 on B, M = 0 on ∂B and
∫
B
M = 1. The two main

difficulties come from the fact that the function M egals to 0 on ∂B and that
the function V does not make it possible for the operator to be coercitive.
This study allows us to affirm that the FENE model admits a solution for a
non homogeneous flow in a stationary case without a convective term.

3. Existence, uniqueness and long time behavior for a solution ψ(t,x,Q) to a
parabolic partial differential equation

∂ ψ

∂t
+u ·∇xψ− 1

2De divQ

(
M(Q)∇Q

(
ψ

M(Q)

))
+ divQ (ψκ) = f(Q) (9)

for (t,x,Q) ∈ R
∗
+×Ω×B whose initial condition ψinit is given. In this model,

u(t,x) and κ(t,x,Q) are two given functions. According to this study we
show that at each velocity u corresponds to a unique constraint σ for the
FENE model.

4. Asymptotic behavior for the solutions ψε(t,x,Q) to

ε

(
∂ ψε

∂t
+ u · ∇xψ

ε

)
− 1

2De divQ

(
M(Q)∇Q

(
ψε

M(Q)

))

+divQ (ψε (κ+ εκ̃)) = 0

(10)

when the parameter ε tends to 0. Roughly speaking, we show that the limit
of ψε corresponds to the value of ψ0 (obtained for ε = 0) up to a boundary
layer in time, i.e. except for a correction function depending on t/ε.

5. Applications to lubrication and to spatial boundary layers: in thin flows, a
model of the type FENE can be put in a non-dimensional form and reveals a
small parameter ε (typically the ratio between the height of the field and its
length in the case of lubrication problem, or the thickness of the boundary
layer in a problem of spatial boundary layer). The model obtained corre-
sponds to the one described by equation (10) and consequently converges to
a stationary model described by the equation (8) when ε tends to 0. The
approximation suggested by Bird and al. [7] in the case of the steady homo-
geneous flows is thus usable and makes it possible to obtain relatively simple
asymptotic models for the constitutive relation.

2. The FENE model.

2.1. The Fokker-Planck equation. Very many models to describe the behav-
ior of the polymers exist. There are several mechanisms, not present in the linear
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models, that are responsible for shear-thinning, finite extensibility of polymer chains,
hydrodynamic interaction, configuration-dependent friction coefficient, excluded vol-
ume effects and inertial viscosity (see for instance the book [19] of Huilgol and Phan-
Thien for a discussion on certain aspects of constituitive modelling polymers). The
simplest non-linear kinetic theory model of a dilute polymer solution is known as the
Finitely Extensible Non-linear Elastic (FENE) dumbbell model (see the book of Bird
and al. [7]). The polymer solution is viewed as a flowing suspension of dumbbells that
do not interact with each other and are convected by the Newtonian solvent. Each
dumbbell consists of two identical Brownian beads connected by an entropic spring;
see figure 1.

Q

Fig. 1. The polymer (in thin line) is modelled by a “dumbbell”: two beads linked by a spring.

On the microscopic level, the kinetic theory gives a Fokker-Planck equation for the
probability density ψ(t,x,Q) where Q denotes the set of variables defining the coarse-
grained micro-structure [7, 15]. As presented above in this paper, we discuss an even
coarser model of the single dumbbell, namely two beads connected by an elastic spring.
In this case, the configuration variable Q simply represents the vector connecting the
two beads of the dumbbell. For such a configuration, the Fokker-Planck equation de-
scribing the probability distribution function ψ(t,x,Q) of the dumbbell orientation Q
on the microscopic level reads

∂ ψ

∂t
+ u · ∇xψ = −divQ

(
(∇xu)T ·Qψ − 2

ζ
F(Q)ψ − 2kθ

ζ
∇Qψ

)
(11)

defined for (t,x,Q) ∈ R
+
∗ × Ω × B and where ζ is the friction coefficient of the

dumbbell beads, θ is the temperature, k is the Boltzmann constant, F is the spring
force, Ω the physical fluid domain in R

d (with d = 2 or d = 3) and B the range for the
elongation Q, that is B ⊂ R

d. The terms in (11) can be roughly explained as follows.
The second term on the left-hand side of (11) stems from the fact that the polymers
are convected by the macroscopic flow. The first term on the right-hand side of (11)
stems from the fact that the polymers are stretched by this macroscopic flow and the
last two terms account respectively for the inner force of the dumbbell due to the
elongation and the random collisions of the solvent particles with the polymers. The
nonlinear force law F is unduly complex, in view of the approximate nature of the
dumbell model, and the preferred force-law is the Warner spring, rewritten here for
the dumbell model (see [19], p. 191):

F(Q) =
HQ

1 − ‖Q‖2

Q2
0

(12)

whereH is the elastic constant and Q0 is the maximum dumbbell extension and where
‖ · ‖ denotes the euclidien norm on R

d, that is ‖Q‖2 = Q2
1 + Q2

2 + ... + Q2
d if Q =

(Q1, Q2, ..., Qd) ∈ R
d. In this case, F is defined for Q ∈ B(0, Q0) and equation (11)

stands for B = B(0, Q0).
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Remark 2.1. Other choices for the spring force can be used. The simplest one
corresponds to the so-called Hookean dumbbells with F(Q) = HQ. For the hookean
dumbbells, the Fokker-Planck equation (11) stands for B = R

d and leads to the
Oldroyd-B fluid which is a macroscopic model. From a physical point of view, the
Hookean potential is too simple and does not lead to a realistic description of the fluid
since it enables each polymer to have an infinite lenght. To obtain a more realistic
macroscopic model than the Oldroyd-B model, there exists a closure, due to Peter-
lin, which consists of replacing the FENE spring force by the pre-average FENE-P
approximation

F(Q) =
HQ

1 − 〈Q2〉
Q2

0

where 〈Q2〉 =

∫

B(0,Q0)

Q2ψ(Q) dQ. (13)

For the FENE-P model, it is possible to obtain a macroscopic model (see for in-
stance [23]). Nevertheless, the Peterlin approximation can be very poor (see Keun-
ings [24], Sizaire et al. [41]) and much better closure approximations are available (G.
Lielens et al. [27]). Thus, for the FENE-P model we can observe (see A.J. Szeri [42])
that a considerable number of dumbbells exceed the maximum allowable stretch Q0.
This defect is corrected for example by the FENE-DT model shown in [42]. At any
rate, closure-approximated dumbbell models (such as FENE-P) are very useful in the
development and evaluation of micro-macro methods, since the micro-macro results
can be compared to those obtained with the continuum approach. Moreover, compar-
isons were carried out (see for instance M. Herrchen and H.C. Öttinger [18]) between
these various models (FENE, FENE-P and other closures). According to the regimes
(elongational flow, transient shear, steady state, etc.), the qualitative differences are
now well-known. Finally, it is important to notice that there does not exist an ex-
act macroscopic constitutive relation for the FENE model and thus the FENE model
represents a truly multi-scale model.

Introducing characteristic variables (denoted by a star ⋆, that is for instance replac-
ing x by L⋆x) we can write the Fokker-Planck equation (11) in the following non-
dimensional form

∂ ψ

∂t
+ u · ∇xψ = −divQ

(
(∇xu)T ·Qψ − 1

2DeF(Q)ψ − 1

2De∇Qψ

)
(14)

defined for (t,x,Q) ∈ R
+
∗ ×Ω×B(0, δ) and where De and δ are two non-dimensional

parameters given by

De =
ζU⋆

4L⋆H
and δ =

Q0

Q⋆
. (15)

The parameter De is usually named the Deborah or the Weissenberg number. It is a
comparison between two characteristic times : T c⋆ = L⋆/U⋆ which is the macroscopic
convective time scale and T r⋆ = ζ/(4H) which characterizes the mesoscopic relaxation
time scale of the spring. The parameter δ is the comparison between two lengths,
the maximal extensibility Q0 of the dumbbells and the characteristic mean elonga-
tion Q⋆. According to H.C. Öttinger [35], the number δ roughly measures the number
of monomer units represented by a bead and it is generally larger than 10.
Notice that in the non-dimensional model (14), the spring force is written F(Q) =

Q

1 − ‖Q‖2/δ2
.
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Remark 2.2. If (∇xu)T is replaced by its anti-symmetric part namely W(u) =
1
2 (∇xu − (∇xu)T ) in the Fokker-Plank equation (14) then we obtain the so-called
co-rotational FENE model. The fact of putting W(u) instead of the whole (∇xu)T

in (14) enables better estimates on ψ in a mathematical study. See for instance [30].

As announced in the introduction, it is possible to write the Fokker-Planck equa-
tion (14) in a pleasant mathematical form. Precisely, we can find a function M such
that div(Fϕ + ∇ϕ) = −div(M∇( ϕM )). First note that M∇( ϕM ) = ∇ϕ −∇(lnM)ϕ.
Hence, it is sufficient to find a function M such that ∇(lnM) = F. Introducing

U(Q) = −δ
2

2
ln

(
1 − ‖Q‖2

δ2

)
, (16)

we note that ∇U = F and then M̃(Q) =
(
1 − ‖Q‖2

δ2

) δ2

2

gives the right behavior.

In the literature, U is called the elastic spring potential and F is the spring force
which derives from this potential. Since all functions of the form λM̃ , λ ∈ R

∗
+ are

appropriate, in the sequel we will prefer to work with the normalized Maxwellian

M(Q) =
1

J

(
1 − ‖Q‖2

δ2

)δ2/2
with J =

∫

B(0,δ)

(
1 − ‖Q‖2

δ2

)δ2/2
dQ, (17)

so that M satisfies M ∈ C∞(B(0, δ),R), 0 < M ≤ 1 on B(0, δ), M = 0 on ∂B(0, δ)
and

∫
B(0,δ)

M = 1.

Introducing this Maxwellian M , it is possible to re-write the Fokker-Planck equa-
tion (14) as follows:

∂ ψ

∂t
+ u · ∇xψ = −divQ

(
(∇xu)T · Qψ

)
− 1

2De divQ

(
M∇Q

(
ψ

M

))
. (18)

With these notations, we have the following result which will be used later to obtain
estimates on the stress constraint σ from estimates on the density ψ.

Lemma 2.1. Let F and M be respectively the spring force and the normalized
Maxwellian introduced above. Assume that δ >

√
2. Then we have the following

estimate
∫

B(0,δ)

M(Q)|F(Q) ⊗ Q|2dQ < +∞ (19)

where | · | corresponds to the following norm on the 2-tensors : |A| = supi,j |Ai,j |.
Proof. According to the definition of the norm | · |, it suffices to show that each

component

Mi,j =

∫

B(0,δ)

M̃(Q) (F (Q)iQj)
2 dQ1...dQd, (20)

for (i, j) ∈ {1, ..., d}2, is finite (for sake of simplicity, we present the demonstration

by using the non-normalized form M̃ of the Maxwellian M , knowing that this re-
sult clearly implies the one for the normalized maxwellian M). By definition of the

Maxwellian M̃ and of the spring force F, we obtain

Mi,j =

∫

B(0,δ)

Q2
iQ

2
j

(
1 − ‖Q‖2

δ2

) δ2
−4
2

dQ1...dQd. (21)
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Using the polar coordinate, that is to say the change of coordinate

Φ : (r; θ1, ..., θd−1) ∈ R
∗
+ × Sd−1 7−→




r sin θ1
r cos θ1 sin θ2

...
r cos θ1... cos θd−1


 ∈ R

d \ {0} (22)

whose the Jacobian is of the form Jac(Φ)(r, θ) = rd−1Φ̂(θ) (the function Φ̂ being a
continuous function on the sphere Sd−1), we obtain

Mi,j =

(∫

Sd−1

Φ̂(θ)dθ

)

∫ δ

0

r3+d
(

1 − r2

δ2

) δ2
−4
2

dr




= C

∫ δ2

0

s1+d/2
(
1 − s

δ2

) δ2
−4
2

ds.

(23)

The result follows from the assumption δ >
√

2 since
∫ 1

0 s
αds converges as soon as

α > −1.

2.2. Stress tensor for the FENE model. The total Cauchy stress tensor σ
(without taking account of the pressure effect already introduced in the momentum
equation via the term ∇p) can be decomposed thus

σ = σS + σP (24)

where σS denotes the solvent contribution and σP the sum of the spring tension
contribution and the bead motion contribution. The expressions for all these con-
tributions in the homogeneous flow case can be found in the book of Bird et al. [7].
We use their extensions to the non-homogeneous flow case developed by Biller and
Petruccione [6, 36], see also [22]. For the solvent contribution we use the classical
Newtonian stress:

σS = 2η D where D =
1

2

(
∇u + (∇u)T

)
(25)

and where η corresponds to the solvent viscosity of the fluid. The contribution of the
polymer to the constraint, written in dimensional form, makes the absolute tempera-
ture of the flow θ and the Boltzmann constant k appear. It is written:

σP = 〈F(Q) ⊗ Q〉dim − kθ〈Id〉dim (26)

where the average 〈 · 〉dim over Q-space for a quantity f is defined by

〈f〉dim =

∫

B(0,Q0)

f(Q)ψ(Q)dQ. (27)

To write the contribution σP of polymer to the constraint in a non-dimensional form
we use the non-dimensional number δ (see its definition given in equation (15)) and
we introduce an additional non-dimensional number λ = kθQ⋆L⋆

ηU⋆
. Hence, in a non-

dimensional form, the relation (26) reads

σP = λ
(
〈F(Q) ⊗ Q〉 − ρId

)
. (28)
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In this formulation, the average 〈 · 〉 for a quantity f is defined by

〈f〉 =

∫

B(0,δ)

f(Q)ψ(Q)dQ (29)

and the notation 〈1〉 =

∫

B(0,δ)

ψ(Q)dQ corresponds to the density of the polymer

chains and is denoted by ρ.

2.3. Explicit solution for the Fokker-Planck equation.

Equilibrium solution - There is a very simple case for which we know the exact
explicit solution of the Fokker-Planck equation (14). It is a naturally stationary
solution corresponding to the equilibrium case (that is with ueq = 0):

ψeq(Q) = ρM(Q), (30)

where the constant ρ corresponds to the density of the polymer chains, that is
ρ =

∫
B(0,δ)

ψeq.

Steady state and co-rotational case - In the co-rotational case (that is when
the quantity ∇xu is replaced by the skew-symmetric tensor W = 1

2

(
∇xu− (∇xu)T

)

in equation (14), see also Remark 2.2) the stationary solution is explicitly given by
ψeq(Q) = ρM(Q). In fact, in this case we have (using the Einstein summation
convention)

divQ(W(x) · Qψeq(Q)) = ρ∂Qi

(
Wij(x)QjM(Q)

)

= ρWij(x)δijM(Q) +Wij(x)Qj∂Qi(M(Q))

= ρWii(x)M(Q) +Wij(x)QjQiN(Q)

(31)

where we note that we can write an equality on the form ∂Qi(M(Q)) = QiN(Q).
Since the tensor W is skew-symmetric and the tensor Q⊗ Q is symmetric, we easily
deduce that

divQ(W(x) ·Qψeq(Q)) = 0. (32)

Homogeneous flows - More generally, u is a so-called homogeneous velocity field
if there is a tensor τ (t), a point x0 ∈ Ω and a constant vector u0 ∈ R

d such that
u(t,x) = τ (t) · (x − x0) + u0. In these cases, it is natural to consider a solution ψ
to (14) which does not depend on macroscopic space, that is which does not depend
on the variable x. Classical examples of homogeneous flows (see, for example,
Chapter 3 in [7] or [29, p. 9-11]) are shear flows and elongational flows.

Steady state extentional flows - Two important special homogeneous flows are
planar extensional flows and uniaxial extensional flows with the velocity gradient
respectively given by

τ = ε̇




1 0 0
0 −1 0
0 0 0


 and τ = ε̇



− 1

2 0 0
0 − 1

2 0
0 0 1


 . (33)

In both cases, ε̇ is called the extensional rate. The Fokker-Planck equation (14) has a
steady-state analytical solution for both types of extensional flows (and more generally
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for any symmetric matrix τ ). This solution is given by formula (13.2-14) in [7] and
has the form

ψ(Q) = M(Q) exp (De τ : Q⊗ Q) . (34)

Steady state shear flows - This corresponds to a flow where the velocity gradient
is in the following form

τ = γ̇




0 1 0
0 0 0
0 0 0


 . (35)

the coefficient γ̇ is called the shear rate. The stationary solution of the Fokker-Planck
equation (14) cannot be found analytically but it is relatively easy to construct an
approximation in the limit of small γ̇ (see Equation 13.5-15, p. 79 of [7]). To do this,
we represent ψ as ψ = ψeq(1 + De γ̇ ψ1 + De2 γ̇2 ψ2 + ...) and substitute it into (14)
to obtain the equation for each term ψk. We obtain

ψ(x,Q) = ρM(Q)

(
1 +

De
2

D(x) : Q⊗ Q +
De2
4

(
1

2
(D(x) : Q⊗ Q)2

− 1

15
〈‖Q‖4〉eqD(x) : D(x) +

4δ2

2δ2 + 7
(1 − ‖Q‖2

2δ2
)(D(x)

·W(x)) : Q⊗ Q

)
+ O(De3)

)
,

(36)

where the notation 〈 · 〉eq corresponds to
∫
B
· ρM(Q) dQ, and D and W are respec-

tively the symmetric and skew-symmetric part of the velocity gradient ∇xu = τ .
Note that this kind of development was obtained again by P. Degond, M. Lemou
and M. Picasso [14]. They recover the calculations of [7] using a different method.
The probabilist density ψ is expand in powers of the Weissenberg number De using a
Chapman-Enskog expansion technique.

Remark 2.3. In part 4, we will study the Fokker-Planck equation (14) in the
stationary case without the convective term u · ∇xψ but for a more general velocity
than in [7], that is for a non-homogeneous flow and for a non small velocity. We will
not find an explicit formula for ψ but the analysis will make it possible to prove that
the approximation (36) is justified in non-homogeneous cases.

3. Functional spaces and fundamental lemmas.

3.1. Functional spaces. From the peculiar form of the Fokker-Planck equa-
tion (18), the adapted functional spaces use Sobolev weight spaces on the ball
B = B(0, δ). More precisely, we introduce

L2(B;M) := {g ∈ L1
loc(B) ;

∫

B

M |g|2 < +∞},

H1(B;M) := {g ∈ L1
loc(B) ;

∫

B

M |g|2 +M |∇g|2 < +∞}.
(37)

These two spaces are Hilbert spaces (see for instance H. Triebel [45, Th. 3.2.2a]) and
are endowed with their usual norms respectively denoted ‖·‖L2(B;M) and ‖·‖H1(B;M).
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In the same way, we introduce

L2
M := M.L2(B;M) = {ϕ ∈ L1

loc(B) ;

∫

B

M
∣∣∣ ϕ
M

∣∣∣
2

< +∞},

H1
M := M.H1(B;M) = {ϕ ∈ L1

loc(B) ;

∫

B

M
∣∣∣ ϕ
M

∣∣∣
2

+M
∣∣∣∇
( ϕ
M

)∣∣∣
2

< +∞}.
(38)

Their natural norms are denoted ‖ · ‖0 and ‖ · ‖1. By definition, they satisfy

‖ψ‖0 =

∥∥∥∥
ψ

M

∥∥∥∥
L2(B;M)

and ‖ψ‖1 =

∥∥∥∥
ψ

M

∥∥∥∥
H1(B;M)

. (39)

Remark 3.1. We can observe that L2
M ⊂ L2(B) and H1

M ⊂ H1(B) where the
spaces L2(B) and H1(B) are the classical Sobolev spaces on the set B.

- Inclusion L2
M ⊂ L2(B) is obvious since on the one hand, by definition of L2

M ,

we have ϕ ∈ L2
M if and only if

ϕ√
M

∈ L2(B), and on the other hand
√
M ∈ L∞(B).

- Inclusion H1
M ⊂ H1(B) is more delicate to prove; it is based on the following

result:

ϕ ∈ H1
M =⇒ ∇M

M

ϕ√
M

∈ L2(B). (40)

This implication comes from to the two following remarks. First N. Masmoudi in [30,
Remark 3.3, p. 6] proves (with our notations) that if ϕ ∈ H1

M then 1
dist

ϕ√
M

∈ L2(B)

where dist corresponds to the distance to the boundary of Ω. Next, within the present
framework the distance dist behaves like M/∇M near to the boundary of B.
Hence, using equation (40) we deduce that if ϕ ∈ H1

M then we have

∇ϕ = ∇
(
M

ϕ

M

)
=
( ∇M
M

ϕ√
M︸ ︷︷ ︸

L2(B)

+
√
M∇

( ϕ
M

)

︸ ︷︷ ︸
L2(B)

) √
M︸︷︷︸

L∞(B)

∈ L2(B), (41)

and consequently we deduce that ϕ ∈ H1(B).

3.2. Linear operator. One more important ingredient in our study is the fol-
lowing linear operator

Lψ = −div
(
M∇

(
ψ

M

))
(42)

on the space L2
M and with domain, see [30, Remark 3.8, p. 9] and notice that we have

needed the assumption δ ≥
√

2, given by

D(L) = {ψ ∈ H1
M ;

∫

B

1

M

∣∣∣div
(
M∇

(
ψ

M

))∣∣∣
2

< +∞}. (43)

We also find in [30, Proposition 3.6, p. 8] the following result and its proof which will
be used to introduce the Galerkin approximation method later.

Lemma 3.1. The operator L is self-adjoint and positive. Moreover, it has a
discrete spectrum formed by a sequence (ℓn)n∈N such that ℓn tends to +∞ when n
tends to +∞.
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About the uniqueness results for a linear operator, it is known that the eigen-
value 0, that is the kernel of the operator L, is particularly important.

Lemma 3.2. The kernel of the operator L is the set {λM, λ ∈ R}.
Proof. This lemma is an immediate consequence of the following formulation of

the operator L :

〈Lψ, ϕ〉L2
M

=

∫

B

M∇
(
ψ

M

)
· ∇
( ϕ
M

)
(44)

where 〈·, ·〉L2
M

corresponds to the scalar product subordinated to the norm ‖ · ‖0

on L2
M . In fact, let ψ be such that Lψ = 0. We easily obtain 〈Lψ, ψ〉L2

M
= 0 and the

formulation (44) yields ∇
(
ψ
M

)
= 0. Thus, thanks to the connexity of B, we deduce

that there exists λ ∈ R such that ψ = λM .

It is natural to introduce the following normalized subspace

H1
M,0 = {ψ ∈ H1

M ;

∫

B

ψ = 0}, (45)

so that, since
∫
BM = 1, the kernel of L

∣∣
H1

M,0

is the null space {0}. In the sequel, the

space H1
M,0 will by equipped with the norm

‖ψ‖1,0 =

√∫

B

M

∣∣∣∣∇
(
ψ

M

)∣∣∣∣
2

. (46)

Knowing the kernel of the operator L, we deduce that ‖ · ‖1,0 is really a norm on
the space H1

M,0. It is also a semi-norm on the space H1
M and notation ‖ψ‖1,0 will be

sometimes used also for functions ψ in H1
M .

To build functions in H1
M,0 we use the following lemma which will be important to

obtain many test functions in the weak formulation later.

Lemma 3.3. Let ψ ∈ H1
M and ξ : R → R be a continuous application, piecewise-

C1 such that ξ′ is bounded on R. Then we have

ϕ := Mξ

(
ψ

M

)
−M

∫

B

Mξ

(
ψ

M

)
∈ H1

M,0 (47)

and ∇
( ϕ
M

)
= ξ′

(
ψ

M

)
∇
(
ψ

M

)
. Moreover, we have ‖ϕ‖1,0 ≤ ‖ξ′‖∞‖ψ‖1,0.

Main ideas of the proof. This result is inspired by the main steps of the proof of
the Stampacchia lemma which affirms that if g ∈ H1(B) and ξ : R → R is continuous,
piecewise-C1, such that ξ′ is bounded on R then we have ξ(g) ∈ H1(B) and ∇ξ(g) =
ξ′(g)∇g. First we prove the result for a regular function ξ ∈ C∞(R,R) approaching
ψ ∈ H1

M by a sequence ψn ∈ C∞(B,R) (in fact the space C∞(B,R) is dense in
H1(B,M), see for instance [1, Proof of lemma 3.1] or [45, Theorem 3.2.2c]). In the
less regular cases for the function ξ the only difference comes from to the fact that the
function ξ has discontinuity points; the set Z of discontinuity points being a subset
of R with null Lebesgue measure. We use the following result (see [16]):

∇
(
ψ

M

)
= 0 almost everywhere on

{
Q ∈ B ;

ψ(Q)

M(Q)
∈ Z

}
. (48)
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These arguments prove that Mξ
(
ϕ
M

)
∈ H1

M and that ∇ξ
(
ϕ
M

)
= ξ′

(
ψ
M

)
∇
(
ψ
M

)
.

The fact that ϕ is a null average is then immediate since
∫
BM = 1. The inequality

on the norm comes from the following estimate

‖ϕ‖1,0 =

√∫

B

M
∣∣∣∇
( ϕ
M

)∣∣∣
2

=

√∫

B

Mξ′
(
ψ

M

)2 ∣∣∣∣∇
(
ψ

M

)∣∣∣∣
2

≤ ‖ξ′‖∞‖ψ‖1,0. (49)

3.3. Fundamental lemmas. The next lemma is a generalized Poincaré inequal-
ity adapted to the weighted spaces introduced before. Its proof can be found in
H.J. Brascamp [9] (see also Proposition 2.1 in [14]) and we use the fact that the func-
tion U is strictly uniformly convex. More precisely the Hessian matrix of U satisfies

Hess U(Q) =
1

1 − ‖Q‖2

δ2

(
Id +

2Q⊗ Q

δ2 − ‖Q‖2

)
(50)

which implies that for all Q ∈ B, i. e. such that ‖Q‖ ≤ δ, and for all x ∈ R
d we

obtain

xT · Hess U(Q) · x ≥ 1

1 − ‖Q‖2

δ2

xT · x ≥ xT · x. (51)

Using a result of H.J. Brascamp [9], we thus have

Lemma 3.4. For all ϕ ∈ H1
M we have the following Poincaré-type inequality

∫

B

M
∣∣∣∇
( ϕ
M

)∣∣∣
2

+

(∫

B

ϕ

)2

≥ ‖ϕ‖2
0. (52)

For the free-average functions (that is for ψ ∈ H1
M,0), this lemma 3.4 shows that

the two norms ‖·‖1 and ‖·‖1,0 are equivalents. This equivalence will be usually useful
in the remainder of the paper.

Lemma 3.5. The injection H1
M ⊂ L2

M is compact.

Proof. Consider a sequence {ϕn}n∈N bounded in H1
M and show that a convergent

sub-sequence can be extracted. By definition of H1
M , for all n ∈ N, there exists

gn ∈ H1(B;M) such that ϕn = Mgn. The sequence {ϕn}n∈N being bounded in H1
M ,

the sequence {gn}n∈N is bounded in L2
M . Since M > 0 on B, M = 0 on ∂B and

dM 6= 0 out of ∂B, we can use the result of G. Métivier [32, Proposition 3.1 p. 221]
affirming that the weight Sobolev space injection H1(B;M) ⊂ L2(B;M). Thus, we
can extract from the sequence {gn}n∈N a sub-sequence, still noted {gn}n∈N and such
that

gn ⇀ g in H1(B;M) and gn → g in L2(B;M). (53)

By definition of the spaces H1
M and L2

M we conclude that

ϕn ⇀Mg in H1
M and ϕn →Mg in L2

M (54)

which proves that the injection H1
M →֒ L2

M is compact.



230 L. CHUPIN

In the same way, we use this next lemma which proves that functions in H1
M are in

some LpM , p > 2, where the weighted-space LpM is defined by

LpM =
{
ϕ ∈ L1

loc(B) ;
(∫

B

M
∣∣∣ ϕ
M

∣∣∣
p )1/p

< +∞
}

(55)

and endowed with its usual norm. More exactly, we have

Lemma 3.6. There exists p > 2 such that the injection H1
M ⊂ LpM is continuous.

Proof. First, let us note that ϕ ∈ LpM if and only if
ϕ

M1−1/p
∈ Lp(B) where the

spaces Lp(B) are the classical Sobolev spaces on the set B. Let ϕ ∈ H1
M . In the next

three steps we will prove that there exists p > 2 such that
ϕ

M1−1/p
∈ Lp(B).

- Since ϕ ∈ H1
M we have ϕ ∈ L2

M thus
ϕ√
M

∈ L2(B). Moreover, using the Hardy

type inequality, see implication (40), we obtain

∇
(

ϕ√
M

)
= ∇

( ϕ
M

√
M
)

=
√
M∇

( ϕ
M

)

︸ ︷︷ ︸
L2(B)

+
1

2

∇M
M

ϕ√
M︸ ︷︷ ︸

L2(B)

∈ L2(B). (56)

Consequently
ϕ√
M

∈ H1(B) and using the classical Sobolev injections, we deduce

that
ϕ√
M

∈ Lq(B) for all q ≤ 2d/(d−2) (and for q ≤ +∞ in the 2-dimensional case).

- Note that (see equation (17)) the normalized Maxwellian M is given by

M(Q) =
1

J

(
1 − ‖Q‖2

δ2

)δ2/2
with J =

∫

B(0,δ)

(
1 − ‖Q‖2

δ2

)δ2/2
dQ. (57)

We note that for α ≤ 2/δ2 we have
M1−α

|∇M | ∈ L∞(B) so that2, using the Hardy type

inequality - see implication (40) again - we obtain

ϕ√
MMα

=
|∇M |
M

ϕ√
M︸ ︷︷ ︸

L2(B)

× M1−α

|∇M |︸ ︷︷ ︸
L∞(B)

∈ L2(B). (58)

- Let 0 ≤ β ≤ α. From the two previous steps, we can write

ϕ√
MMβ

=
( ϕ√

MMα

)β/α

︸ ︷︷ ︸
L2α/β(B)

×
( ϕ√

M

)1−β/α

︸ ︷︷ ︸
Lqα/(α−β)(B)

∈ Lr(B) with r =
2αq

qβ + 2(α− β)
.

(59)

2To be rigorous the function M1−α/|∇M | is not in L∞ since it is not bounded in the neigh-
borhood of 0. Nevertheless, all the study undertaken here makes it possible to understand what
occurs where M is cancelled, i.e. on the boundary ∂B of B. To be correct, it is necessary to lo-
cate and make the study near to the neighborhood of the boundary ∂B, for example on the ring
B∗ = {Q ∈ Rd ; δ/2 < ‖Q‖ < δ}.
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Let p be the real number such that 1− 1/p = β + 1/2. The previous result is written

∀p ; 2 ≤ p ≤ 2/(1 − 2α)
ϕ

M1−1/p
∈ Lr with r =

4αpq

qp− 2q + 4αp− 2p+ 4
. (60)

In particular, we have
ϕ

M1−1/p
∈ Lp as soon as r ≥ p. The inequality r ≥ p holds if

and only if p ≤ 2 + 4α(q−2)
4α+q−2 . It is thus possible to find p > 2 such that

ϕ

M1−1/p
∈ Lp.

According to this method the greatest value of p is given by choosing q = 2d/(d− 2)
and α = 2/δ2. We obtain

H1
M ⊂ LpM for all p ≤ 2 +

8

δ2 + 2(d− 2)
(61)

In the 2-dimensional case, we have H1
M ⊂ L

2+8/δ2

M whereas in the 3-dimensional case

H1
M ⊂ L

2+8/(δ2+2)
M .

The last lemma of this part concerns the traces on ∂B for function ψ ∈ H1
M . In

fact, we can observe that we never have introduced boundary conditions associated
with the Fokker-Planck equation (14) whereas it causes the second order operator L
to appear. This originates from the following result whose the proof is given in [30,
Remarks 3.7 and 3.8, p. 9].

Lemma 3.7. If δ >
√

2 then for ψ ∈ H1
M the trace of ψ on ∂B exists and is equal

to 0.

Concerning the boundary conditions, a recent paper of C. Liu and H. Liu [28]
shows that for the Fokker-Planck equation, any pre-assigned distribution on boundary
will become redundant once δ ≥

√
2. Moreover if the probability density function ψ

is regular enough for its trace to be defined on ∂B (for instance if ψ ∈ H1
M ) then

the trace is necessarily zero when δ >
√

2. So the appropriate function space for a
weak solution may be chosen as a subspace of the usual Hilbert space, restricted with
a proper weight to take care of the boundary singularity. From the lemma 3.7 all
subspace of the Hilbert space H1

M is appropriate for the Fokker-Planck equation.

Finally, let H−1
M be the topological dual of H1

M,0, that is to say the set of continuous

linear forms on H1
M,0. Each application χ ∈ H−1

M will be defined by χ : ϕ ∈ H1
M,0 7→

〈χ, ϕ〉 ∈ R. By its continuity, for each χ ∈ H−1
M there exists C ∈ R such that

∀ϕ ∈ H1
M,0 |〈χ, ϕ〉| ≤ C‖ϕ‖1,0. (62)

As is usual, the smallest of these constants C is denoted ‖χ‖−1: it is the norm of χ
on H−1

M .

4. Stationary solution.

4.1. Main results. Let u ∈ W 1,∞(Ω) be a velocity vector field on a bounded
open subset Ω of R

d, let ρ ∈ L∞(Ω) be a density polymer chains scalar field on Ω
and F the spring elastic force of the FENE polymer model (that is F(Q) = 1

1−‖Q‖2/δ2

for Q ∈ B where B is the ball B(0, δ) ⊂ R
d). We show in this part that there

exists a unique solution ψ depending on both x the macroscopic variable and Q the
microscopic one, to the following Fokker-Planck equation

divQ

(
(∇xu)T · Qψ − 1

2DeF(Q)ψ − 1

2De∇Qψ

)
= 0 (63)
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on Ω × B and satisfying
∫
B
ψ(x,Q)dQ = ρ(x) for all x ∈ Ω. It is clear that the

variable x can be viewed as a parameter and in this part and we can consider that
there is only one variable Q. All the operators used in this part will refer to this
variable, that is ∇Q = ∇, divQ = div,...
Using part 2, equation (63) can be rewritten as

− 1

2De div

(
M∇

(
ψ

M

))
+ div (ψκ) = 0 (64)

on B where M is a Maxwellian on B defined by the relation (17) and κ corresponds
to the velocity influence, that is in a classical framework κ = (∇xu)T · Q. Changing
ψ into ψ− ρM , since

∫
B
M = 1, we will be interested here in the equivalent equation

− 1

2De div

(
M∇

(
ψ

M

))
+ div (ψκ) = f (65)

on B with
∫
B ψ = 0 and f = ρdiv(Mκ). The weak formulation of this equation is

written: find ψ ∈ H1
M,0 such that for all ϕ ∈ H1

M,0

1

2De

∫

B

M∇
(
ψ

M

)
· ∇
( ϕ
M

)
−
∫

B

ψκ · ∇
( ϕ
M

)
= 〈f, ϕ〉 (66)

where 〈·, ·〉 denote the duality brackets between H−1
M and H1

M,0. We prove in this part
the following theorem.

Theorem 4.1. Let B = B(0, δ) with δ >
√

2, κ ∈ L∞(B,Rd) and M ∈ C∞(B,R)
be a normalized Maxwellian3. For all f ∈ H−1

M the problem (66) admits a unique
solution ψ ∈ H1

M,0.

Hence, taking f = ρ div(Mκ) and ψ ∈ H1
M,0 the solution of equation (66) for this

term source, we deduce that ψ + ρM is the unique weak solution of equation (64).
Thus for ρ ∈ L∞(Ω) the theorem 4.1 implies the existence of a weak solution ψ ∈
L∞(Ω)⊗H1

M to equation (63) such that for all x ∈ Ω we have
∫
B ψ(x,Q) dQ = ρ(x).

Remark 4.1.

- As specified before, the assumption δ >
√

2 is not constraining from the physical
point of view since δ is generally larger than 10.

- Recall that in the co-rotational case, that is when κ(x,Q) = W(x) · Q with
W = 1

2

(
∇xu − (∇xu)T

)
, the solution to (64) is explicitly given by ψeq = ρM , see

section 2.3.

In the next parts, we need estimates on the derivatives in the variable x of the
solution of the stationary Fokker-Planck equation (63). To obtain such estimates, we
derive equation (63) with respect to each component xi of x. We obtain (denoting by
a prime ′ the derivative with respect to xi)

divQ

(
(∇xu)T ·Qψ′ − 1

2DeF(Q)ψ′ − 1

2De∇Qψ
′
)

= −divQ

(
(∇xu

′)T · Qψ
)
. (67)

Thus, if the velocity field verified u ∈ W 2,∞(Ω), since (using Theorem 4.1) ψ ∈
L∞(Ω) ⊗H1

M we first deduce that − divQ

(
(∇xu

′)T ·Qψ
)
∈ L∞(Ω) ⊗ L2

M . We can

3That is to say that the function M satisfies 0 < M ≤ 1 on B, M = 0 on ∂B and
R
B
M = 1
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apply theorem 4.1 and, in the case where ρ ∈W 1,∞(Ω), easily deduce that, knowing ψ,
the solution ψ′ to equation (67) such that

∫
B ψ

′(·,Q) dQ = ρ′ satisfies ψ′ ∈ L∞(Ω)⊗
H1
M . More generally, deriving successively, we obtain

Corollary 4.1. Let p ∈ N and Ω be a bounded domain in R
d (d ∈ {2, 3}). If

u ∈ W p+1,∞(Ω) and ρ ∈ W p,∞(Ω) then the solution ψ to equation (63) such that for
all x ∈ Ω we have

∫
B ψ(x,Q) dQ = ρ(x) satisfies ψ ∈ W p,∞(Ω) ⊗H1

M .

4.2. Existence proof in theorem 4.1.

Principle for the existence proof of theorem 4.1 - Using the equivalence
between the norm ‖ · ‖1 and ‖ · ‖1,0 on the space H1

M,0, see lemma 3.4, the operator

ϕ 7→ −div
(
M∇

(
ϕ
M

))
is coercitive on H1

M,0, thus we can (see for instance the Lax-

Milgram theorem) prove that there exists a weak solution (that is belonging to H1
M,0)

to equations like

− 1

2De div

(
M∇

(
ψ

M

))
= f (68)

as soon as the source term f belongs in H−1
M . Moreover in this case we have ‖ψ‖1 ≤

C‖f‖H−1
M

where C is constant only depending on the domain B and on the Deborah

number De.
Because of the non-coercivity of the operator ϕ 7→ − div

(
M∇

(
ϕ
M

))
+ div (ϕκ), we

start by studying an approximate problem. For each n ∈ N, let us consider the
application Tn : r ∈ R 7→ max(min(r, n),−n) ∈ R (see also figure 2 below) and let us

denote by Fn the following application: Fn : ψ̃ ∈ L2
M 7→ ψ ∈ H1

M,0 ⊂ L2
M where ψ is

the weak solution of

− 1

2De div

(
M∇

(
ψ

M

))
= f − div

(
MTn

(
ψ̃

M

)
κ

)
. (69)

We will note that for ψ̃ ∈ L2
M we have MTn

( eψ
M

)
∈ L2

M and since κ ∈ L∞(Ω) we

obtain div
(
MTn

( eψ
M

)
κ
)
∈ H−1

M . The function Fn is then well defined.

k

k

−k

−k
Tk

Fig. 2. The function Tk, k ∈ N
∗.

Let us prove that Fn is a compact application by showing that its image Fn(L2
M ) is

bounded in L2
M . Let us consider ψ = Fn(ψ̃) ∈ Fn(L2

M ). Taking ψ as a test function
in the weak formulation of the equation (69) we obtain

1

2De

∫

B

M

∣∣∣∣∇
(
ψ

M

)∣∣∣∣
2

= 〈f, ψ〉 +

∫

B

MTn

(
ψ̃

M

)
κ · ∇

(
ψ

M

)
. (70)
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In other words, by using the duality definition and the Cauchy-Schwarz inequality,
we obtain

‖ψ‖2
1,0 ≤ C‖ψ‖1,0 + 2De‖κ‖∞

√√√√
∫

B

M

∣∣∣∣∣Tn
(
ψ̃

M

)∣∣∣∣∣

2
√∫

B

M

∣∣∣∣∇
(
ψ

M

)∣∣∣∣
2

. (71)

Using the fact successively that for all r ∈ R we have |Tn(r)| ≤ n and that
∫
BM = 1,

we deduce that

‖ψ‖2
1,0 ≤ C‖ψ‖1,0 + 2nDe‖κ‖∞

√∫

B

M‖ψ‖1,0 = C‖ψ‖1,0 + 2nDe‖κ‖∞‖ψ‖1,0. (72)

We deduce that

‖Fn(ψ̃)‖0 = ‖ψ‖0 ≤ ‖ψ‖1,0 ≤ C + 2nDe‖κ‖∞. (73)

Thus, the image of L2
M by the application Fn is contained in the ball of L2

M of radius
C + 2nDe‖κ‖∞. Applying the Schauder fixed point theorem, we conclude that the
application Fn admits a fixed point, denoted by ψn, in L2

M . This fixed point is
consequently a solution of

1

2De

∫

B

M∇
(
ψn
M

)
·∇
( ϕ
M

)
−
∫

B

MTn

(
ψn
M

)
κ·∇

( ϕ
M

)
= 〈f, ϕ〉 ∀ϕ ∈ H1

M,0. (74)

The continuation of the proof consists of obtaining estimates on these functions ψn
in order to be able to pass to the limit when n tends to +∞.

Estimate of M ln
(
1 +

∣∣∣∣
ψn

M

∣∣∣∣
)

in H1
M,0-norm - Let ξ be the application from

R to R defined by ξ(r) =

∫ r

0

ds

(1 + |s|)2 . This application is continuous, piecewise-

C1 and with a bounded derivative. According to lemma 3.3 we can choose ϕ =

Mξ

(
ψn
M

)
−M

∫

B

Mξ

(
ψn
M

)
as a test function in formulation (74). The first of the

three terms obtained is treated in the following way

1

2De

∫

B

M∇
(
ψn
M

)
· ∇
(
ξ

(
ψn
M

))
=

1

2De

∫

B

M

∣∣∣∇
(
ψn

M

)∣∣∣
2

(
1 +

∣∣∣ψn

M

∣∣∣
)2

=
1

2De
∥∥∥M ln

(
1 +

∣∣∣∣
ψn
M

∣∣∣∣
)∥∥∥

2

1,0
.

(75)

For the second term we obtain

∣∣∣∣
∫

B

MTn

(ψn
M

)
κ · ∇

(
ξ

(
ψn
M

))∣∣∣∣ =

∣∣∣∣∣∣

∫

B

MTn

(
ψn

M

)

1 +
∣∣∣ψn

M

∣∣∣
κ ·

∇
(
ψn

M

)

1 +
∣∣∣ψn

M

∣∣∣

∣∣∣∣∣∣

≤ ‖κ‖∞
∫

B

∣∣∣∣∣∣

Tn

(
ψn

M

)

1 +
∣∣∣ψn

M

∣∣∣

∣∣∣∣∣∣
M

∣∣∣∣∇(ln
(
1 +

∣∣∣∣
ψn
M

∣∣∣∣
)
)

∣∣∣∣ .

(76)
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Using the fact that for all r ∈ R we have |Tn(r)| ≤ |r|, we deduce that4

∣∣∣∣
∫

B

MTn

(ψn
M

)
κ · ∇

(
ξ

(
ψn
M

))∣∣∣∣ ≤ C
∥∥∥M ln

(
1 +

∣∣∣∣
ψn
M

∣∣∣∣
)∥∥∥

1,0
. (77)

For the last term, using f ∈ H−1
M , we deduce

|〈f, ϕ〉| ≤ C‖ϕ‖1,0 = C

√∫

B

Mξ′
(
ψn
M

)
∇
(
ψn
M

)

= C

√√√√√√
∫

B

M

∣∣∣∇
(
ψn

M

)∣∣∣
2

(
1 +

∣∣∣ψn

M

∣∣∣
)2 = C

∥∥∥M ln
(
1 +

∣∣∣∣
ψn
M

∣∣∣∣
)∥∥∥

1,0
.

(78)

The three estimate (75), (77) and (78) enable us to obtain the existence of a constant
C > 0 such that for all n ∈ N we have

∥∥∥M ln
(
1 +

∣∣∣∣
ψn
M

∣∣∣∣
)∥∥∥

1,0
≤ C. (79)

Estimate of µ({Q ∈ B ; |ψn(Q)| ≥ kM(Q)}) - In this paragraph, we control
the size of the set where ψn has large values, that is the set Ek = {Q ∈ B ; |ψn(Q)| ≥
kM(Q)} for k ∈ N.

Writing Ek = {Q ∈ B ;
(

ln(1 +

∣∣∣∣
ψn(Q)

M(Q)

∣∣∣∣)
)2

≥ (ln(1 + k))2} we obtain

∫

B

M

(
ln(1 +

∣∣∣∣
ψn
M

∣∣∣∣)
)2

=

∫

Ek

M

(
ln(1 +

∣∣∣∣
ψn
M

∣∣∣∣)
)2

+

∫

B\Ek

M

(
ln(1 +

∣∣∣∣
ψn
M

∣∣∣∣)
)2

. (80)

We easily deduce the following estimate

∫

B

M

(
ln(1 +

∣∣∣∣
ψn
M

∣∣∣∣)
)2

≥
∫

Ek

M

(
ln(1 +

∣∣∣∣
ψn
M

∣∣∣∣)
)2

≥
∫

Ek

M(ln(1 + k))2. (81)

Introducing the measure dµ = M(Q)dQ, this inequality is also rewritten

µ(Ek) ≤
1

(ln(1 + k))2

∥∥∥M ln
(
1 +

∣∣∣∣
ψn
M

∣∣∣∣
)∥∥∥

2

0
(82)

which, taking into account the estimate (79), is written

µ({Q ∈ B ; |ψn(Q)| ≥ kM(Q)}) ≤ C

(ln(1 + k))2
. (83)

Estimate of MSk

(
ψn

M

)
in H1

M,0-norm - Recall that for k ∈ N the application

Tk is given by Tk : r ∈ R 7→ max(min(r, k),−k) ∈ R. We now define the application
Sk such that Tk + Sk = id. To obtain an estimate on ψn we successively obtain an

estimate on MSk

(
ψn
M

)
and then on MTk

(
ψn
M

)
for a sufficiently large k ∈ N.

4We also use the Cauchy-Schwarz inequality to show that
R
B
Mf ≤

qR
B
M
qR

B
Mf2 =qR

B
Mf2.
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k

k

−k

−k
Tk

k
−k

Sk

Fig. 3. The functions Tk and Sk, k ∈ N∗.

Let k ∈ N. Taking ϕ = MSk

(
ψn
M

)
−M

∫

B

MSk

(
ψn
M

)
as test function test in (74).

According to lemma 3.3, this choice is possible and we obtain

1

2De

∫

B

M∇
(
ψn
M

)
·∇
(
Sk

(
ψn
M

))
−
∫

B

MTn

(ψn
M

)
κ ·∇

(
Sk

(
ψn
M

))
= 〈f, ϕ〉 (84)

Since Sk + Tk = id and for all r ∈ R we have S′
k(r) = 0 or T ′

k(r) = 0 we deduce that
the first term is written

1

2De

∫

B

M∇
(
ψn
M

)
· ∇
(
Sk

(
ψn
M

))
=

1

2De

∫

B

M

∣∣∣∣∇
(
Sk

(
ψn
M

))∣∣∣∣
2

=
1

2De
∥∥∥MSk

(
ψn
M

)∥∥∥
2

1,0
.

(85)

Using the fact that for all r ∈ R we have |Tn(r)| ≤ |r| and using the Cauchy-Schwarz
inequality, we estimate the second term in the following way

∣∣∣∣
∫

B

MTn

(ψn
M

)
κ · ∇

(
Sk

(
ψn
M

))∣∣∣∣ ≤ ‖κ‖∞

√∫

B

|ψn|2
M

√∫

B

M

∣∣∣∣∇
(
Sk

(
ψn
M

))∣∣∣∣
2

.

(86)

However
∣∣∣ψn

M

∣∣∣ =
∣∣∣Tk
(
ψn

M

)
+ Sk

(
ψn

M

)∣∣∣ ≤ k +
∣∣∣Sk

(
ψn

M

)∣∣∣ thus
∣∣∣ ψn√

M

∣∣∣ ≤ k
√
M +

√
M
∣∣∣Sk

(
ψn

M

)∣∣∣ and using the triangular inequality we obtain

√∫

B

|ψn|2
M

≤
√∫

B

k2M +

√∫

B

M
∣∣∣Sk

(
ψn
M

) ∣∣∣
2

= k +
∥∥∥MSk

(
ψn
M

)∥∥∥
0
. (87)

Since Sk(r) = 0 for |r| < k, we can estimate this last term as follows:

∥∥∥MSk

(
ψn
M

)∥∥∥
2

0
=

∫

B

M
∣∣∣Sk

(
ψn
M

)∣∣∣
2

=

∫

Ek

M
∣∣∣Sk

(
ψn
M

) ∣∣∣
2

, (88)

where we recall that Ek = {Q ∈ B ; |ψn(Q)| ≥ kM(Q)}. According to the Hölder
inequality, for all p > 1, denoting by q the conjugate of p (i.e. such that 1

p + 1
q = 1)

and using the estimate (83), we obtain

∥∥∥MSk

(
ψn
M

)∥∥∥
2

0
≤
(∫

Ek

M

)1/q (∫

Ek

M
∣∣∣Sk

(
ψn
M

) ∣∣∣
2p
)1/p

≤ C

(ln(1 + k))2/q

(∫

B

M
∣∣∣Sk

(
ψn
M

) ∣∣∣
2p
)1/p

.

(89)
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We thus control the L2
M -norm of MSk

(
ψn

M

)
using his L2p

M -norm . But this L2p
M -norms

can itself be controlled, for an adapted value of p by the H1
M -norm. In fact, using the

continuous weighted Sobolev embedding (see lemma 3.6) there exists p > 1 for which
we have the inequality

(∫

B

M
∣∣∣Sk

(
ψn
M

) ∣∣∣
2p
)1/p

≤ C
∥∥∥MSk

(
ψn
M

)∥∥∥
2

1

≤ C
(∥∥∥MSk

(
ψn
M

)∥∥∥
2

1,0
+
∥∥∥MSk

(
ψn
M

)∥∥∥
2

0

)
.

(90)

We deduce a control on the L2
M -norm of MSk

(
ψn

M

)
using his H1

M,0-norm:

(
1 − C

(ln(1 + k))2/q

)∥∥∥MSk

(
ψn
M

)∥∥∥
2

0
≤ C

(ln(1 + k))2/q

∥∥∥MSk

(
ψn
M

)∥∥∥
2

1,0
, (91)

that is a control on the form
∥∥∥MSk

(
ψn

M

)∥∥∥
0

≤ A(k)
∥∥∥MSk

(
ψn

M

)∥∥∥
1,0

where

lim
k→+∞

A(k) = 0. Hence, we get the following estimate for the second term of the

left hand side of equation (84):

∣∣∣∣
∫

B

MTn

(ψn
M

)
κ · ∇

(
Sk

(
ψn
M

))∣∣∣∣

≤ ‖κ‖∞
(
k +A(k)

∥∥∥MSk

(
ψn
M

)∥∥∥
1,0

)∥∥∥MSk

(
ψn
M

)∥∥∥
1,0
.

(92)

The last term of the equation (84) is controlled as follow

|〈f, ϕ〉| ≤ C‖ϕ‖1,0 = C

√∫

B

M
∣∣∣∇
( ϕ
M

) ∣∣∣
2

≤ C

√∫

B

M
∣∣∣∇
(
Sk

( ϕ
M

)) ∣∣∣
2

= C
∥∥∥MSk

(
ψn
M

)∥∥∥
1,0

(93)

The preceding estimates (85), (92) and (93) enable the deduction, from equation (84),
for all k ∈ N, of the following inequality:

1

2De
∥∥∥MSk

(
ψn
M

)∥∥∥
1,0

≤ ‖κ‖∞
(
k +A(k)

∥∥∥MSk

(
ψn
M

)∥∥∥
1,0

)
+ C. (94)

Since lim
k→+∞

A(k) = 0, it possible to obtain for a sufficiently large k the inequality

(recall that all the constants named C do not depend on n)

∥∥∥MSk

(
ψn
M

)∥∥∥
1,0

≤ C. (95)

Estimate of MTk

(
ψn

M

)
in H1

M,0
-norm - Choose now ϕ = MTk

(
ψn
M

)
−

M

∫

B

MTk

(
ψn
M

)
as a test function in equation (74) (according to lemma 3.3 we
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have ϕ ∈ H1
M,0). As for the estimate of MSk

(
ψn
M

)
, we study each of three terms

present in equation (74). The first is written

1

2De

∫

B

M∇
(
ψn
M

)
· ∇
(
Tk

(
ψn
M

))
=

1

2De

∫

B

M

∣∣∣∣∇
(
Tk

(
ψn
M

))∣∣∣∣
2

=
1

2De
∥∥∥MTk

(
ψn
M

)∥∥∥
2

1,0
.

(96)

For the second term, we proceed as follow:
∣∣∣∣
∫

B

MTn

(ψn
M

)
κ · ∇

(
Tk

(
ψn
M

))∣∣∣∣ ≤ ‖κ‖∞
∫

B

M
∣∣∣Tn
(ψn
M

)∣∣∣|∇
(
Tk

(
ψn
M

))
|

≤ ‖κ‖∞
∫

B

|ψn||∇
(
Tk

(
ψn
M

))
|.

(97)

But for
∣∣ψn

M

∣∣ ≥ k we have ∇
(
Tk

(
ψn

M

))
= 0 whereas for

∣∣ψn

M

∣∣ < k we clearly have

|ψn| < kM and consequently, according to the Hölder inequality we obtain

∣∣∣∣
∫

B

MTn

(ψn
M

)
κ · ∇

(
Tk

(
ψn
M

))∣∣∣∣ ≤ ‖κ‖∞
∫

B

kM |∇
(
Tk

(
ψn
M

))
|

≤ ‖κ‖∞

√∫

B

k2M

√∫

B

M
∣∣∣∇
(
Tk

(
ψn
M

))∣∣∣
2

(98)

Since
∫
BM = 1 we obtain the following relation

∣∣∣∣
∫

B

MTn

(ψn
M

)
κ · ∇

(
Tk

(
ψn
M

))∣∣∣∣ ≤ k‖κ‖∞
∥∥∥MTk

(
ψn
M

)∥∥∥
1,0
. (99)

As for the last term it is treated like those of the preceding estimates:

∣∣∣∣〈f,MTk

(
ψn
M

)
〉
∣∣∣∣ ≤ C

∥∥∥MTk

(
ψn
M

)∥∥∥
1,0
. (100)

These estimates (96), (99) and (100) give

∥∥∥MTk

(
ψn
M

)∥∥∥
1,0

≤ C. (101)

Estimate of ψn in H1
M,0

- Since for all k ∈ N we have Sk + Tk = id we obtain

‖ψn‖1,0 =

∥∥∥∥MSk

(
ψn
M

)
+MTk

(
ψn
M

)∥∥∥∥
1,0

≤
∥∥∥∥MSk

(
ψn
M

)∥∥∥∥
1,0

+

∥∥∥∥MTk

(
ψn
M

)∥∥∥∥
1,0

.

(102)

Using the estimates (95) and (101) we deduce that there exists a constant C > 0 such
that for all n ∈ N we have

‖ψn‖1,0 ≤ C. (103)
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Convergence of the sequence {ψn}n∈N - According to the estimate (103), the
sequence {ψn}n∈N is bounded in H1

M,0. According to the lemma (3.5), a subsequence

of the sequence {ψn}n∈N (always denoted {ψn}n∈N) admits a limit ψ weak in H1
M,0

and strong in L2
M . In order to perform the limit in equation (74), it is enough to

prove that the sequence {MTn

(
ψn

M

)
}n∈N tends to ψ in L2

M . We obtain

∥∥∥MTn

(
ψn
M

)
− ψ

∥∥∥
2

0
≤
∥∥∥MTn

(
ψn
M

)
−MTn

(
ψ

M

)∥∥∥
2

0
+
∥∥∥MTn

(
ψ

M

)
− ψ

∥∥∥
2

0
. (104)

However the application T : R → R is 1-lipschitz and we have

∥∥∥MTn

(
ψn
M

)
−MTn

(
ψ

M

)∥∥∥
2

0
=

∫

B

M

∣∣∣∣Tn
(
ψn
M

)
− Tn

(
ψ

M

)∣∣∣∣
2

≤
∫

B

M

∣∣∣∣
ψn
M

− ψ

M

∣∣∣∣
2

= ‖ψn − ψ‖2
0

(105)

which proves that
∥∥∥MTn

(
ψn

M

)
−MTn

(
ψ
M

)∥∥∥
0

tends to 0 when n tends to +∞. As

regards the other term, the Lebesgue convergence dominated theorem directly affirms

that
∥∥∥MTn

(
ψ
M

)
− ψ

∥∥∥
0

also tends to 0 when n tends to +∞. Finally, it was shown

that the sequence {MTn

(
ψn

M

)
}n∈N converges to ψ in L2

M and consequently that ψ is

a solution of
∫

B

M∇
(
ψ

M

)
· ∇
( ϕ
M

)
−
∫

B

ψκ · ∇
( ϕ
M

)
= 〈f, ϕ〉 ∀ϕ ∈ H1

M,0. (106)

4.3. Uniqueness proof in theorem 4.1.

Main steps for the uniqueness proof - To prove uniqueness, we proceed as
follows. We start by introducing the dual problem. It is shown that this dual
problem admits a solution by using the Schauder topological degree method. Then,
by using the existence both problem and its dual, we deduce uniqueness from these
two problems.

Introduction of the dual problem - For g ∈ H−1
M let us consider the elliptic

partial differential equation

− 1

2De div

(
M∇

(
φ

M

))
−Mκ · ∇

(
φ

M

)
= g on B (107)

and we look for a solution of this equation satisfying
∫
B
φ = ρ where ρ is a given real

number.

Remark 4.2. In equation (64) we have considered convection terms only in a
conservative form; in the dual equation (107), we consider convection terms only in
a non-conservative form. It is important to note that we can not consider in the
same equation convection terms both in a conservative form and a non-conservative
form. In fact a sum of a first order term under a conservative form and a first order
term under a non-conservative form can create a zeroth order term (for instance
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div(ψκ)−κ·∇ψ = ( div κ)ψ) and it is known that an equation of the kind −∆ψ+λψ =
f can have no solution as soon as λ is an eigenvalue of the operator −∆ and f = 0.

A compact application for the dual problem - For φ̃ ∈ H1
M,0 we have Mκ ·

∇
( eφ
M

)
∈ L2

M ⊂ H−1
M since ‖Mκ · ∇

( eφ
M

)
‖0 ≤ ‖κ‖∞‖φ̃‖1,0. There exists thus5 a

unique solution φ = G(φ̃) ∈ H1
M,0 to

1

2De

∫

B

M∇
(
φ

M

)
· ∇
( ϕ
M

)
−
∫

B

ϕκ · ∇
(
φ̃

M

)
= 〈g, ϕ〉 for all ϕ ∈ H1

M,0. (109)

This defines an application G : H1
M,0 → H1

M,0. It is quite easy to see that G is

continuous; in fact if φ̃n tends to φ̃ in H1
M,0 then Mκ · ∇

( eφn

M

)
tends to Mκ · ∇

( eφ
M

)

in H−1
M (more precisely in L2

M ). Thus div
(
M∇

(
φn

M

))
tends to div

(
M∇

(
φ
M

))

which implies5 that φn = G(φ̃n) tends to φ = G(φ̃) in H1
M,0.

We will now prove that G is a compact operator. Suppose that the sequence {φ̃n}n∈N

is bounded in H1
M,0; then {Mκ · ∇

( eφn

M

)
}n∈N is bounded in H−1

M so that, using

ϕ = G(φ̃n) = φn as a test function in the equation satisfied by φn, we obtain using
the lemma 3.4

‖φn‖2
1,0 ≤

(
C + 2De

∥∥∥Mκ · ∇
(
φ̃n
M

)∥∥∥
H−1

M

)
‖φ̃n‖1,0, (110)

which implies that the sequence {φn}n∈N is bounded in H1
M,0. Using the lemma 3.5,

up to a subsequence, we can thus suppose that {φn}n∈N converges a.e. on B and
is bounded in L2

M . Let (n,m) ∈ N
2; subtract the equation satisfied by φm to the

equation satisfied by φn and use ϕ = φn −φm as a test function, this gives, using the
lemma 3.4 again,

‖φn − φm‖2
1,0 ≤ 2De

∣∣∣∣∣

∫

B

(φn − φm)κ · ∇
(
φ̃n − φ̃m

M

)∣∣∣∣∣ ≤ C‖φn − φm‖0. (111)

From the strong convergence of {φn}n∈N to φ in L2
M we deduce that the sequence

{φn}n∈N is a Cauchy sequence in H1
M,0 and converges in this space. We deduce that

the application G is compact.

Existence result for the dual problem using the Leray-Schauder topolog-
ical degree - We give here only the points which are useful for us concerning the
topological degree method. For a definition of the topological degree and for the prin-
cipal properties that it checks, one must consult the founder article of J. Leray and
J. Schauder [25].

5We use the fact that the operator ϕ 7→ −div
�
M∇

�
ϕ

M

��
is coercitive in H1

M,0, that is to say
that the equation

− div

�
M∇

�
ψ

M

��
= f (108)

has a solution in H1
M,0 as soon as f ∈ H−1

M
, and ‖ψ‖1 ≤ C‖f‖

H
−1
M

where C is constant depending

only on the domain B.
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Lemma 4.1. Let E be a Banach space and A be the set of triplets (Id −G,Ω, z)
such that Ω is a bounded open in E, z ∈ E and G : Ω → E a compact application
with z /∈ (Id −G)(∂Ω). There exists an application d : A → Z such that

• if z ∈ Ω then d(Id,Ω, z) = 1;
• if for all s ∈ [0, 1] we have 0 /∈ (Id−sG)(∂Ω) then d(Id,Ω, 0) = d(Id−G,Ω, 0);
• If d(Id −G,Ω, z) 6= 0 then there exists w ∈ Ω such that w −G(w) = z.

Remark 4.3. Generally, to show that a compact operator G admits a fixed-point,
since the last point of the lemma 4.1, it is sufficient to prove that d(Id−G,Ω, 0) 6= 0.
But by using the two first points of this lemma 4.1, if we show that for s ∈ [0, 1] we
have 0 /∈ (Id − sG)(∂Ω) then we will obtain d(Id − G,Ω, 0) = d(Id,Ω, 0) = 1 6= 0 as
soon as 0 ∈ Ω (what will be the case for the example when Ω is a ball centered in 0).

According to this remark, since the operator G introduced with equation (109) is a
compact operator, to prove that it has a fixed point, we just have to find R > 0 such
that for all s ∈ [0, 1] there exists no solution of φ− sG(φ) = 0 satisfying ‖φ‖1,0 = R.
Let s ∈ [0, 1] and suppose that φ ∈ H1

M,0 satisfies φ = sG(φ). We obtain

1

2De

∫

B

M∇
(
φ

M

)
·∇
( ϕ
M

)
−s
∫

B

ϕκ ·∇
(
φ

M

)
= 〈sg, ϕ〉 for all ϕ ∈ H1

M,0. (112)

Using the “non-dual” problem (see the existence proof of theorem 4.1 where we obtain
an existence solution of equation (74)), we know that for all f ∈ H−1

M there exists at
least one solution ψ ∈ H1

M,0 to

1

2De

∫

B

M∇
(
ψ

M

)
· ∇
( ϕ
M

)
− s

∫

B

ψκ · ∇
( ϕ
M

)
= 〈f, ϕ〉 for all ϕ ∈ H1

M,0. (113)

Moreover, according to estimate (103) there exist C1 ∈ R
+ such that for all f ∈ H−1

M

with ‖f‖H−1
M

≤ 1 and for all s ∈ [0, 1] we have ‖ψ‖1,0 ≤ C1. We can verify that

this constant C1 depends only on ‖f‖H−1
M

and can be selected independently on the

function f when ‖f‖H−1
M

≤ 1. In addition according to the estimates obtained in

the existence proof of theorem 4.1 this constant C1 depends on ‖sκ‖∞ but since
s ∈ [0, 1] we have ‖sκ‖∞ ≤ ‖κ‖∞ and consequently the constant C1 can also be
selected independently of s.
By taking ϕ = φ in the equation (113) satisfied by ψ and ϕ = ψ in the equation (112)
satisfied by φ, we obtain

〈f, φ〉 = 〈sg, ψ〉 ≤ s‖g‖H−1
M
C1 ≤ ‖g‖H−1

M
C1 := C2. (114)

Since this inequality is satisfied for all f ∈ H−1
M such that ‖f‖H−1

M
≤ 1, we deduce

that ‖φ‖1,0 ≤ C2.
Now take R = C2 + 1. We have just proven that, for any s ∈ [0, 1], any solution to
φ − sG(φ) = 0 satisfies ‖φ‖1,0 < R; thus by the Leray-Schauder topological degree
theory, the application G has a fixed point, that is to say a solution of (109).

Uniqueness - Since the equation (66) is linear, it is sufficient to prove that the only
solution to (66) without source term, i.e. taking f = 0, is the null function. Let ψ be
a solution to (66) with f = 0 and let φ a solution of (107) with6 g = sgn(ψ) ∈ H−1

M .

6For each ψ ∈ H1
M

, the function sgn(ψ) is defined as follow : for all ϕ ∈ H1
M

〈sgn(ψ), ϕ〉 =

Z
{Q∈B ; ψ(Q)>0}

ϕ−

Z
{Q∈B ; ψ(Q)<0}

ϕ. (115)
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By putting ϕ = φ as a test function in the equation (66) satisfied by ψ and ϕ = ψ
as a test function in the weak formulation of the equation (107) satisfied by φ, we
respectively obtain

1

2De

∫

B

M∇
(
ψ

M

)
· ∇
(
φ

M

)
−
∫

B

ψκ · ∇
(
φ

M

)
= 0 and

1

2De

∫

B

M∇
(
φ

M

)
· ∇
(
ψ

M

)
−
∫

B

ψκ · ∇
(
φ

M

)
= 〈sgn(ψ), ψ〉.

(117)

We deduce that 〈sgn(ψ), ψ〉 = 0, that is to say
∫
B |ψ| = 0 and then ψ = 0.

Remark 4.4. A similar reasoning gives the uniqueness of the solution of the dual
problem (109).

5. Non stationary solution.

5.1. Existence result for a simplified equivalent problem. Let u ∈
C(0,+∞;W 1,∞(Ω)) be a velocity vector field on a bounded open subset Ω of R

d

without normal component on ∂Ω, De be the Deborah number quantifying the elas-
ticity of the polymer, F be the spring elastic force of the FENE polymer model, that is
F(Q) = 1

1−‖Q‖2/δ2 for Q ∈ B where B is the open ball B(0, δ) ⊂ R
d and δ corresponds

to the maximal dumbbell elongation, and ψinit ∈ L2
M be the initial distribution of the

dumbbells. We show in this part that there exists a unique solution ψ depending
on time t ∈ R

+, on the macroscopic variable x ∈ Ω and on the microscopic variable
Q ∈ B to the following Fokker-Planck equation

∂ ψ

∂t
+ u · ∇xψ = −divQ

(
(∇xu)T · Qψ − 1

2DeF(Q)ψ − 1

2De∇Qψ

)
(118)

such that the initial condition cöıncides with ψinit. Using the part 2, equation (118)
can be rewritten as

∂ ψ

∂t
+ u · ∇xψ = − divQ (ψκ) +

1

2De divQ

(
M(Q)∇Q

(
ψ

M(Q)

))
(119)

where M is the Maxwellian on B defined by the relation (17) and κ corresponds to
the velocity influence, that is in classical case κ(t,x,Q) = (∇xu(t,x))T ·Q.
Since derivation with respect to the macroscopic variable x intervenes only in the
convective terms, namely u · ∇xψ, we can start by treating the case of the parabolic
equation with the scalar unknown ψ only depending on t ∈ R

∗
+ and on Q ∈ B:

∂ ψ

∂t
= −divQ (ψκ) +

1

2De divQ

(
M(Q)∇Q

(
ψ

M(Q)

))
(120)

with ψ(0,Q) = ψinit(Q) for all Q ∈ B.
In fact, if for each X ∈ Ω we find a solution (t,Q) 7→ ψ(t,X,Q) to equation (120)

We verify that this linear form on H1
M is continuous since, thanks to the Cauchy-Schwarz inequality,

we obtain

|〈sgn(ψ), ϕ〉| ≤ 2

Z
B

|ϕ| ≤ 2

sZ
B

|ϕ|2

M

sZ
B

M = 2‖ϕ‖0 ≤ 2‖ϕ‖1,0. (116)
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with κ(t,Q) = κ(t,X,Q) ∈ C(0,+∞;L∞(B)) (the variable X is consider as parame-
ter) then the function ψ(t,x,Q) is a solution of the system (119) where the relation
between X and x is given by the following lemma (see [8]):

Lemma 5.1. Let u ∈ C([0, T ];W p,α(Ω,RN )) with p > N
α + 1 and α ∈ N

∗ such
that u · n = 0 on ∂Ω (the vector n corresponds to a normal vector to the boundary).
Then the system

dX

dt
(t,x) = u(t,X(t,x)) and X(0,x) = x (121)

has a solution X ∈ C1([0, T ];Dp,α(Ω,RN )) where Dp,α(Ω,RN ) is the following space

Dp,α(Ω,RN ) = {ζ ∈W p,α(Ω,RN ),

ζ is a bijection from Ω to Ω and ζ−1 ∈W p,α(Ω,RN )}.
(122)

Thus, as for the stationary problem previously studied, we do not explicitly denote
in this part the dependences in the variable Q. Except for the time derivative which
is explicitly indicated, all the derivatives (for instance ∇ or div) will be derivatives
with respect to Q.
The weak formulation of this equation (120) is written: find ψ ∈ C(0,+∞;H1

M) such
that for all ϕ ∈ H1

M

∂

∂t

(∫

B

ψ
ϕ

M

)
+

1

2De

∫

B

M∇
(
ψ

M

)
· ∇
( ϕ
M

)
=

∫

B

ψ κ · ∇
( ϕ
M

)
in D′(0,+∞).

(123)
We prove in the next part the following theorem

Theorem 5.1. Let B = B(0, δ) with δ >
√

2, κ ∈ C(0,+∞;L∞(B,Rd)) and
M ∈ C∞(B,R) be a normalized Maxwellian7. For all ψinit ∈ L2

M there exists a
unique solution ψ ∈ C(0,+∞;L2

M) ∩ L2
loc(0,+∞;H1

M ) to equation (123) such that
ψ(0,Q) = ψinit(Q) for all Q ∈ B. Moreover the Q-average

∫
B ψ(t,Q)dQ does not

depend on time and
• if ψinit(Q) ≥ 0 for all Q ∈ B then ψ(t,Q) ≥ 0 for all (t,Q) ∈ [0,+∞[×B;
• if

∫
B
ψinit = 0 and if 2De‖κ‖C(0,+∞;L∞(B)) < 1 then lim

t→+∞
ψ(t,Q) = 0 for

all Q ∈ B (with exponential decreasing).

5.2. Proof of theorem 5.1.

Ideas for the existence proof - Concerning equation (123), a simple a priori
estimate exists (see estimate (128) below). To prove the existence of a solution
of equation (123) it suffices to work with an approach problem on which such an
estimate holds. The lemma 3.1 enables us to use a Galerkin approximation ψn based
on the eigenfunctions of the operator L (see [30] for the same method in a similar
case). For clarity, we present here the a priori estimates.

Average conservation - Taking ϕ = M ∈ H1
M as a test function in the weak

formulation (123) we obtain
∫

B

ψ(t,Q)dQ =

∫

B

ψinit(Q)dQ ∀t ∈ [0, T ]. (124)

7That is to say that the function M satisfies 0 < M ≤ 1 on B, M = 0 on ∂B and
R
B
M = 1
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A priori estimate - Choosing ϕ = ψ as a test function in the weak formulation (123)
we obtain8

d

dt

(‖ψ‖2
0

2

)
+

1

2De‖ψ‖
2
1,0 =

∫

B

ψκ · ∇
(
ψ

M

)
. (125)

Using the Cauchy-Schwarz inequality, we obtain

d

dt

(‖ψ‖2
0

2

)
+

1

2De‖ψ‖
2
1,0 ≤ ‖κ‖∞‖ψ‖0‖ψ‖1,0 ≤ 1

4De‖ψ‖
2
1,0 + De‖κ‖2

∞‖ψ‖2
0. (126)

Using the Poincaré lemma (see lemma 3.4), we deduce that for all ε > 0 we obtain

d

dt

(‖ψ‖2
0

2

)
+

(
1

4De − ε

)
(‖ψ‖2

0 − ρ2
0) + ε‖ψ‖2

1,0 −De‖κ‖2
∞‖ψ‖2

0 ≤ 0. (127)

We write this relation in the following form

d

dt

(‖ψ‖2
0

2

)
+

(
1

4De − 2ε−De‖κ‖2
∞

)
‖ψ‖2

0 + ε‖ψ‖2
1 ≤ ρ2

0

(
1

4De − ε

)
. (128)

With this estimate, we easily deduce (after integrating with respect to time and using
the classical Gronwall lemma) that the sequence of the approach solution (which comes
from the Galerkin method, for instance) is bounded in L∞(0, T ;L2

M) ∩ L2(0, T ;H1
M )

for all T ∈ R
∗
+. To pass to the limit in equation (123), it suffices to find an estimate

on ∂ ψ
∂t . Using the estimate (128), we know that M∇

(
ψ
M

)
−Mκ ·∇

(
ψ
M

)
is bounded

in L2(0, T ;L2
M). Since ∂ ψ

∂t = 1
2De div

(
M∇

(
ψ
M

)
−Mκ · ∇

(
ψ
M

))
we obtain

∥∥∥∥
∂ ψ

∂t

∥∥∥∥
L2(0,T ;H−1

M )

≤ C. (129)

Existence result - The convergence of the Galerkin approximation sequence
{ψn}n∈N toward an application ψ solution of the problem (123) results from the
estimates (128) and (129):

ψn ⇀ ψ in L∞(0, T ;L2
M) weak-⋆,

ψn ⇀ ψ in L2(0, T ;H1
M) weakly,

∂ ψn
∂t

⇀
∂ ψ

∂t
in L2(0, T ;H−1

M ) weakly.

(130)

Uniqueness - Let ψ1 and ψ2 be two solutions of (123). Due to the linearity, the
difference ψ2 − ψ1 is a solution of the same problem with zero initial condition (that
is in particular with zero average: ρ0 = 0). The estimate (128) enables us to obtain
the following relation on y = ‖ψ2 − ψ1‖2

0:

y′(t) ≤ Cy(t) on R
+. (131)

Using the Gronwall lemma, we deduce that y(t) ≤ eCty(0). Since y(0) = 0 we
conclude that y = 0 and consequently that ψ1 = ψ2. This proves the uniqueness to

8We take care of the fact that ‖ · ‖2
1,0 is not a norm on the space H1

M
but only a semi-norm.
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the problem (123).

Long time behavior - Assume that
∫
B
ψinit = 0, that is ρ0 = 0. The energy

estimate (128) reads

y′(t) + h(t)y(t) ≤ 0 on R
+, (132)

where the function y corresponding to y(t) = ‖ψ‖2
0(t) and the function h is defined

by

h(t) =
1

4De − ε−De‖κ‖2
∞(t). (133)

According to a Gronwall lemma, we have for all t ∈ R
+

y(t) ≤ y(0)exp

(
−
∫ t

0

h(s)ds

)

= y(0)exp

(
−
( t

4De − tε−De
∫ t

0

‖κ‖2
∞(s)ds

))
.

(134)

To ensure the stability of the solution, it suffices that the quantity t
4De − tε −

De
∫ t
0 ‖κ‖2

∞ tends to +∞ when t tends to +∞. If κ ∈ C(0,+∞;L∞(B)) then we
have

t

4De − tε−De
∫ t

0

‖κ‖2
∞ ≥ t

(
1

4De − ε−De‖κ‖2
C(0,+∞;L∞(B))

)
. (135)

Under the assumption 2De‖κ‖C(0,+∞;L∞(B)) < 1 it is possible to choose ε > 0 such
that

1

4De − ε−De‖κ‖2
C(0,+∞;L∞(B)) > 0 (136)

and consequently such that y(t) tends to 0 when t tends to +∞.

Positivity - Taking ϕ = ψ− (the negative part of ψ) as a test function in the weak

formulation (123). This choice is licit since M is positive we have ψ− = Mϑ
(
ψ
M

)
∈

H1
M where the application ϑ : r ∈ R 7→ max(−r, 0) ∈ R is continuous, piecewise-C1

such that ϑ′ is bounded on R (see lemma 3.3). We obtain

d

dt

(‖ψ−‖2
0

2

)
+

1

2De

∫

B

M

∣∣∣∣∇
(
ψ

M

)∣∣∣∣
2

=

∫

B

Mψ−κ · ∇
(
ψ−

M

)
(137)

Like obtaining the estimate (128), we use the Cauchy-Schwarz inequality:

d

dt

(‖ψ−‖2
0

2

)
+

1

2De‖ψ
−‖2

1,0 ≤ De
2
‖κ‖2

∞‖ψ−‖2
0 +

1

2De‖ψ
−‖2

1,0, (138)

so that the application z defined on R
∗
+ by z = ‖ψ−‖2

0 satisfies z′ ≤ C‖κ‖2
∞z. Using

the Gronwall lemma, if ψinit ≥ 0, that is if y(0) = 0 then y(t) = 0 for all t, this proves
that ψ− = 0. We deduce that ψ ≥ 0.
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Remark 5.1.

- If κ ∈ L2(0,+∞;L∞(B)), by choosing ε < 1
4De in the estimate (134), we clearly

have the stability result, that is y(t) tends to 0 when t tends to +∞, without other
smallness conditions of De or κ.

- More generally, the optimal condition on De and κ to obtain a stability result
from estimate (134) is

4De2 lim
t→∞

1

t

∫ t

0

‖κ‖2
∞ < 1. (139)

5.3. Existence result for the stress contribution in the FENE model.
Using the theorem 5.1 we can deduce an existence result, a uniqueness result and an
asymptotic time behavior for the FENE model describe by equation (118). In fact, for
x ∈ Ω let κ(t,Q) = (∇xu(t,x))T ·Q, and also assuming that u ∈ C(0,+∞;W 1,∞(Ω))
we have obtained κ ∈ C(0,+∞;L∞(B)) with

‖κ‖C(0,+∞;L∞(B)) = δ‖u‖C(0,+∞;W 1,∞(Ω)). (140)

Hence, the lemma 5.1 coupled with the theorem 5.1 gives

Corollary 5.1. Let B = B(0, δ) with δ >
√

2, M ∈ C∞(B,R) be a normalized
Maxwellian9, Ω be a bounded domain in R

d (d ∈ {2, 3}), and u ∈ C(0,+∞;W 1,∞(Ω))
be a velocity vector field on Ω without normal component on ∂Ω. For all ψinit ∈
L∞(Ω) ⊗ L2

M there exists a unique weak solution ψ ∈ C(0,+∞;L∞(Ω) ⊗ L2
M ) ∩

L2
loc(0,+∞;L∞(Ω) ⊗ H1

M ) to equation (118) such that ψ(0,x,Q) = ψinit(x,Q) for
all (x,Q) ∈ Ω × B. Moreover the mean value

∫
B ψ(t,x,Q)dQ does not depend on

time and,

• if ψinit(x,Q) ≥ 0 for all (x,Q) ∈ Ω×B then ψ(t,x,Q) ≥ 0 for all (t,x,Q) ∈
[0,+∞[×Ω×B;

• if
∫
B
ψinit(x,Q)dQ = 0 for all x ∈ Ω and if we have

2δDe‖u‖C(0,+∞;W 1,∞(Ω)) < 1 then we obtain lim
t→+∞

ψ(t,x,Q) = 0 for

all (x,Q) ∈ Ω ×B (with exponential decreasing).

Using this corollary, we deduce that the solution of the non-stationary Fokker-Planck
equation (9) tends to the solution of the stationary equation (8) when the time t tends
to +∞ as soon as the velocity is small enough.
In fact, let ψ(t,x,Q) be the solution of (9) with ψinit(x,Q) as initial condition. Con-

sider the solution ψ̃(x,Q) of equation (8) with
∫
B
ψ̃(x,Q)dQ =

∫
B
ψinit(x,Q)dQ.

It is easy to see that ψ(t,x,Q) − ψ̃(x,Q) is a solution of equation (9) with zero
Q-average. Hence, according to corollary 5.1 if 2δDe‖u‖C(0,+∞;W 1,∞(Ω)) < 1 then

ψ(t,x,Q)− ψ̃(x,Q) tends to 0 as t tends to +∞. That is ψ(t,x,Q) → ψ̃(x,Q) when
t→ +∞.
For instance, for a co-rotationel flow we explicitely know the stationary solution of
equation (8), see section 2.3. Hence if the velocity is small enough then the solution
of the Fokker-Planck equation with ψinit as initial condition satisfies ψ(t,x,Q) →(∫
B ψinit(x,Q)dQ

)
M when t→ +∞.

9That is to say that the function M satisfies 0 < M ≤ 1 on B, M = 0 on ∂B and
R
B
M = 1
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Remark 5.2.

- The existence result obtained in corollary 5.1 was already shown (see for in-
stance [26, Lemma 4] or [37, Lemma 3]). This corollary not only makes it possible to
prove the existence but also to understand the long time behavior of solutions.

- The condition 2δDe‖u‖C(0,+∞;W 1,∞(Ω)) < 1 corresponds to an excess of en-
ergy. This excess is compensated in a complete model (taking to account the mo-
mentum equation and not only the constitutive relation for the constraint), see for
instance [1], [26] or [30]. Nevertheless, for the next part and applications developed
in this paper, the interesting case corresponds to the case where u is small.

In the continuation of this article (see part 6), we will need to prove on one hand a
regularity result with respect to the variable x on the solution of equation (118), on
the other hand an existence result for equation (118) when a source term is added.
That is a x-regular solution of

∂ ψ

∂t
+ u · ∇xψ = − divQ

(
(∇xu)T ·Qψ − 1

2DeF(Q)ψ − 1

2De∇Qψ

)
+ f. (141)

About the regularity with respect to the variable x, it is sufficient to use the lemma 5.1
which connects the regularity with respect to x for a transport equation by u and
the regularity of this velocity field u. About the addition of a term source f to equa-
tion (118), we can easily notice that the proof of the theorem 5.1 is not modified much.
In fact, the weak formulation with source term is written: find ψ ∈ C(0,+∞;H1

M )
such that for all ϕ ∈ H1

M

∂

∂t

(∫

B

ψ
ϕ

M

)
+

1

2De

∫

B

M∇
(
ψ

M

)
· ∇
( ϕ
M

)

=

∫

B

ψ κ · ∇
( ϕ
M

)
+ 〈f, ϕ〉 in D′(0,+∞).

(142)

Since the proof is based on estimates (see the proof of the theorem 5.1), it is sufficient
to prove that these estimates are not deteriorated by the contribution of the source
term f . Choosing ϕ = ψ as a test function in the weak formulation (142) and using
the Cauchy-Schwarz inequality we obtain

d

dt

(‖ψ‖2
0

2

)
+

1

2De‖ψ‖
2
1,0 ≤ ‖κ‖∞‖ψ‖0‖ψ‖1,0 + ‖f‖−1‖ψ‖1,0. (143)

The Young inequality allows us to write, for all ε′ > 0,

d

dt

(‖ψ‖2
0

2

)
+

1

2De‖ψ‖
2
1,0

≤ 1

4De‖ψ‖
2
1,0 + (1 + ε′)De‖κ‖2

∞‖ψ‖2
0 +

(
1 +

1

ε′

)
De‖f‖2

−1.

(144)

Using the Poincaré lemma (see lemma 3.4), we deduce that for all ε > 0 we obtain

d

dt

(‖ψ‖2
0

2

)
+

(
1

4De − 2ε− (1 + ε′)De‖κ‖2
∞

)
‖ψ‖2

0 + ε‖ψ‖2
1

≤ ρ2
0

(
1

4De − ε

)
+

(
1 +

1

ε′

)
De‖f‖2

−1.

(145)
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As for the case without a source term (that is for f = 0), thanks to this esti-
mate, we can deduce an existence result for ψ as soon as f ∈ L2

loc(0,+∞;H−1
M )

and 1
4De − 2ε − (1 + ε′)De‖κ‖2

∞ > 0 which gives the same condition on ‖κ‖∞ than
the condition obtained when f = 0 (taking ε and ε′ small enough).
The uniqueness proof being similar to the case f = 0, we deduce the following corol-
lary:

Corollary 5.2. Let B = B(0, δ) with δ >
√

2, M ∈ C∞(B,R) be a nor-
malized Maxwellian, Ω be a bounded domain in R

d (d ∈ {2, 3}), p ∈ N, u ∈
C(0,+∞;W p+1,∞(Ω)) be a velocity vector field on Ω without normal component on
∂Ω and f ∈ L2

loc(0,+∞;W p,∞(Ω)⊗H−1
M ). For all ψinit ∈W p,∞(Ω)⊗L2

M there exists
a unique weak solution ψ ∈ C(0,+∞;W p,∞(Ω)⊗L2

M )∩L2
loc(0,+∞;W p,∞(Ω)⊗H1

M )
to equation (141) such that ψ(0,x,Q) = ψinit(x,Q) for all (x,Q) ∈ Ω ×B.

According to the corollary 5.1 and using the lemma 2.1 we can deduce the following
result.

Corollary 5.3. If the velocity field satisfies u ∈ C(0,+∞;W 1,∞(Ω)) and u ·n =
0 on ∂Ω then the FENE model is well posed in the sense that it correspond to a unique
polymer stress which satisfies σP ∈ C(0,+∞;L∞(Ω)).

Proof. By definition (see equation (28)), we have σP = λ (〈F(Q) ⊗ Q〉 − ρId).
It is obvious that if ψ ∈ C(0,+∞;L∞(Ω) ⊗ L2

M )) then ρ =
∫
B ψ ∈ C(0,+∞;L∞(Ω))

(we use here the fact that L2
M ⊂ L2(B) ⊂ L1(B)). Next, we obtain

〈F(Q) ⊗ Q〉 =

∫

B

√
M(Q)F(Q) ⊗ Q

ψ(Q)√
M(Q)

dQ. (146)

Using the Cauchy-Schwarz inequality, we obtain

|〈F(Q) ⊗ Q〉| ≤ ‖ψ‖0

√∫

B

M(Q)|F(Q) ⊗ Q|2dQ (147)

where we recall that the norm | · | denotes the maximal component of a tensor: |A| =
supi,j |Ai,j |. Using the lemma 2.1, we deduce that 〈F(Q) ⊗ Q〉 ∈ C(0,+∞;L∞(Ω))
and consequently that σP ∈ C(0,+∞;L∞(Ω)).

6. Asymptotic behavior and time boundary layer. According to the pre-
vious part (section 5), we know that for a given function ψinit ∈ L∞(Ω) ⊗ L2

M

and for each ε > 0 the following system admits a unique solution ψε depending
on (t,x,Q) ∈ R+ × Ω ×B

ε

(
∂ ψε

∂t
+ u · ∇xψ

ε

)
− 1

2De divQ

(
M(Q)∇Q

(
ψε

M(Q)

))
+ divQ (ψε (κ+ εκ̃)) = 0

(148)
such that ψε(0,x,Q) = ψinit(x,Q), and according to part 4, the following system
(formally obtained by taking ε = 0 in the preceding one) admits a unique solution ψ0

depending on (x,Q) ∈ Ω ×B

− 1

2De divQ

(
M(Q)∇Q

(
ψ0

M(Q)

))
+ divQ

(
ψ0κ

)
= 0 (149)

and such that

∫

B

ψ0(x,Q)dQ =

∫

B

ψinit(x,Q)dQ.
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6.1. Main results. We rigorously justify the convergence of the solution ψε

to ψ0 when ε tends to 0. More precisely, we show the following result:

Theorem 6.1. Let B = B(0, δ) be a ball of R
d of radius δ >

√
2, M ∈ C∞(B,R)

be a normalized Maxwellian10, κ ∈ W 1,∞(Ω) ⊗ L∞(B), κ̃ ∈ C(0,+∞;W 1,∞(Ω) ⊗
L∞(B)), u ∈ C(0,+∞;W 2,∞(Ω)) and ψinit the initial condition satisfying ψinit ∈
W 1,∞(Ω) ⊗ L2

M .
For each ε ∈ R

∗
+ we denote by ψε ∈ C(0,+∞;W 1,∞(Ω)⊗L2

M )∩L2
loc(0,+∞;W 1,∞(Ω)⊗

H1
M ) the solution of equation (148) and by ψ0 ∈ W 1,∞(Ω) ⊗ H1

M the solution of
equation (149).

Then there exists two functions ψ̃0 in C(0,+∞;W 1,∞(Ω) ⊗ L2
M ) ∩

L2
loc(0,+∞;W 1,∞(Ω)⊗H1

M ) and Ψ in C(0,+∞;L∞(Ω)⊗L2
M )∩L2

loc(0,+∞;L∞(Ω)⊗
H1
M ) such that

ψε(t,x,Q) = ψ0(x,Q) + ψ̃0
( t
ε
,x,Q

)
+ εΨ(t,x,Q). (150)

The function ψ̃0 is called a time boundary layer. For small values of κ, it satisfies

lim
τ→+∞

ψ̃0(τ,x,Q) = 0 (with exponential decreasing). Moreover, if ψinit = ψ0 then

ψ̃0 = 0.

ε

εΨ
ψ0

ψ0

t0

ψε

W 1,∞(Ω) ⊗ L2
M

ψinit

Fig. 4. Illustration of the theorem 6.1.

Remark 6.1.

- When ψinit = ψ0, that is when the initial condition ψinit of the systems (148),
for all ε > 0, coincides with the solution ψ0 of the stationary problem (149), we say
that the data is well-prepared. On the contrary case, we say that the data is ill-prepared
(see [10]).

- We deduce from this theorem that ψε tends to ψ0 in L2([0,+∞[;L2(Ω) ⊗H1
M )

and that the convergence takes place in L∞([0,+∞[;L2(Ω) ⊗ H1
M ) when the data is

well-prepared.
- More generally, we can show (exactly as in theorem 6.1) that for each N ∈ N,

there exists some functions ψ0, ..., ψN , some profiles ψ̃0, ..., ψ̃N and a residue Ψ
such that

ψε(t,x,Q) = ψ0(x,Q) + ψ̃0
( t
ε
,x,Q

)
+ · · · + εNψN (x,Q)

+ εN ψ̃N
( t
ε
,x,Q

)
+ εN+1Ψ(t,x,Q)

(151)

10That is to say that the function M satisfies 0 < M ≤ 1 on B, M = 0 on ∂B and
R
B
M = 1
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as soon as κ ∈ WN+1,∞(Ω) ⊗ L∞(B), κ̃ ∈ C(0,+∞;WN+1,∞(Ω) ⊗ L∞(B)), u ∈
C(0,+∞;WN+2,∞(Ω)) and ψinit ∈ WN+1,∞(Ω)⊗L2

M . Moreover if κ is small enough

the functions ψ̃k introduced above satisfy lim
τ→+∞

ψ̃k(τ,x,Q) = 0 (with exponential

decreasing) and the residue is bounded independently of ε.

6.2. Proof of theorem 6.1. The proof is organized in three steps. The first
consists of building an approximate solution. We carry out a formal asymptotic
extension of the solution. In the second step, we solve the profile equations. The first
one corresponding to the initial equations without the term ε, the second one to an
equation in which it is necessary to control the decay in the fast variable. The third
step consists in showing that the residue of the extension is bounded in an adequate
space.

Boundary layer profile - We seek an asymptotic extension of ψε in the form

ψε(t,x,Q) = ψ0

( t
ε
,x,Q

)
+ εψ1

( t
ε
,x,Q

)
+ ε2ψ2

( t
ε
,x,Q

)
+ · · · (152)

For such a method, it is convenient to introduce the following notations. For all k ∈ N,
we have

ψk(τ,x,Q) = ψk(x,Q) + ψ̃k(τ,x,Q), (153)

where ψk(x,Q) = lim
τ→+∞

ψk(τ,x,Q) and ψ̃k with fast decay in τ .

We then replace formally ψε by its asymptotic extension in the equation (148). We
then seek to determine the profile ψk by identifying all terms of the same order in ε.
At the order 0, we obtain

∂ ψ0

∂τ
− 1

2De divQ

(
M(Q)∇Q

(
ψ0

M(Q)

))
+ divQ (ψ0κ(x,Q)) = 0 (154)

and we impose ψ0(x,Q, 0) = ψinit(x,Q). We let τ → +∞ and we deduce

− 1

2De divQ

(
M(Q)∇Q

(
ψ0

M(Q)

))
+ divQ

(
ψ0κ(x,Q)

)
= 0 (155)

where the Q-average of ψ0 is given by

∫

B

ψ0(x,Q) dQ =

∫

B

ψinit(x,Q) dQ. From the

equation (154), we then obtain

∂ ψ̃0

∂τ
− 1

2De divQ

(
M(Q)∇Q

(
ψ̃0

M(Q)

))
+ divQ

(
ψ̃0κ(x,Q)

)
= 0 (156)

with ψ̃0(x,Q, 0) = ψinit(x,Q) − ψ0(x,Q). Using the same method, we obtain, at

order k ≥ 1, the following equations for the profile ψk and ψ̃k :

− 1

2De divQ

(
M(Q)∇Q

(
ψk

M(Q)

))
+ divQ

(
ψkκ(x,Q)

)

= −divQ

(
ψk−1κ̃(x,Q)

)
− u · ∇xψk−1

(157)
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with zero Q-average and

∂ ψ̃k
∂τ

− 1

2De divQ

(
M(Q)∇Q

(
ψ̃k

M(Q)

))
+ divQ

(
ψ̃kκ(x,Q)

)

= −divQ

(
ψ̃k−1κ̃(x,Q)

)
− u · ∇xψ̃k−1

(158)

with zero initial value.

Asymptotic extension - In the study we have just undertaken, we obtained the
main term of the extension ψ0 = ψ0 + ψ̃0 where ψ0 and ψ̃0 are solutions respectively
of the problems (155) and (156). These two systems were studied previously (see
Theorem 4.1 for the solution of equation (155) and Corollary 5.1 for the solution of
equation (156)) which makes it possible to affirm the existence of each profile. More
precisely according to corollaries 4.1 and 5.2 and using the assumptions of theorem 6.1
we deduce that

ψ0 = ψ0 + ψ̃0 ∈ C(0,+∞;W 1,∞(Ω) ⊗ L2
M ) ∩ L2

loc(0,+∞;W 1,∞(Ω) ⊗H1
M ). (159)

In the same way, if the velocity u, the vector field κ... are more regular with respect
to the variable x then corollaries 4.1 and 5.2 imply that each profile ψk is well defined
like the sum of the solutions of (157) and (158).

Convergence of the extension - The study previously carried out is only formal
and to justify that the development of ψ in power of ε is rigorously a development
(that is, converges) we write ψε in the following form

ψε(t,x,Q) = ψ0

( t
ε
,x,Q

)
+ εΨ(t,x,Q) (160)

where ψ0 is the profile determined above and we prove that the residue Ψ is bounded.
Clearly, to obtain a rigorous development until the order k ≥ 1, we have

ψε(t,x,Q) = ψ0

( t
ε
,x,Q

)
+ · · · + εkψk

( t
ε
,x,Q

)
+ εk+1Ψ(t,x,Q) (161)

where ψi (0 ≤ i ≤ k) are the profiles determined above and we prove that the residue Ψ
is bounded. For the sake of simplicity, we show here the case of the zeroth order.
Introduce the profile given by equation (160) in the equation (148). Using the equa-

tions satisfied by ψ0 and ψ̃0 (that is by ψ0) the following equation on the residue Ψ
is obtained

ε

(
∂Ψ

∂t
+ u · ∇xΨ

)
− 1

2De divQ

(
M(Q)∇Q

(
Ψ

M(Q)

))

+ divQ (Ψ(κ(x,Q) + εκ̃(x,Q))) = − divQ (ψ0κ̃(x,Q)) − u · ∇xψ0

(162)

with zero initial value: ψ̃0(0,x,Q) = 0. Thus the equation satisfied by Ψ̃(τ,x,Q) =
Ψ(t,x,Q) where t = ετ is the same as that obtained for Ψ (equation (162)) except

that we replace ε∂Ψ
∂t by ∂ eΨ

∂τ . According to part 5, the equation satisfied by Ψ̃ is of
the form of the equation (141) where the source term f is given by

f = −divQ (ψ0κ̃(x,Q)) − u · ∇xψ0. (163)
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The regularity of ψ0 being known, we deduce that

f ∈ C(0,+∞;L∞(Ω) ⊗ L2
M ) ∩ L2

loc(0,+∞;L∞(Ω) ⊗H1
M ) (164)

and the corollary 5.2 gives the following result:

‖Ψ̃‖C(0,+∞;L∞(Ω)⊗L2
M )∩L2

loc(0,+∞;L∞(Ω)⊗H1
M ) ≤ C, (165)

where C does not depend on ε. We deduce that the residue Ψ satisfies

‖Ψ‖C(0,+∞;L∞(Ω)⊗L2
M ) ≤ C and ‖Ψ‖L2

loc
(0,+∞;L∞(Ω)⊗H1

M ) ≤ εC, (166)

which concludes this demonstration.

7. Applications to viscoelastic laminar boundary layers and lubrication
problems.

7.1. Almost one dimensional flows. In many natural flows or in the labora-
tory, we know that one of the directions of the flow is privileged. It is, for example,
the case when the geometry in which the fluid moves is “almost one dimensional”, for
instance if Ω = [0, L] × [0, H ] ⊂ R

2 with H ≪ L then it is natural to distinguish in
the non-dimensional step the two characteristic lengths L⋆ and H⋆, so revealing the
ratio

ε :=
H⋆

L⋆
≪ 1. (167)

For such flows, it is usual to distinguish in the same manner the horizontal velocity u
of the fluid and its vertical velocity v. It is generally supposed that two associated
characteristic velocities U⋆ and V⋆ satisfy the relation V⋆ = εU⋆. This choice makes it
possible to preserve, in non-dimensional form, the free-divergence relation div(u) = 0.
In such a domain, the velocity gradient is written in a non-dimension form

∇xu =


 ∂xu

1

ε
∂zu

ε∂xv ∂zv


 =

1

ε

(
0 ∂zu
0 0

)
+ O(1). (168)

Physically, this means that the flow is managed by a shear flow. It is thus natural
to wonder whether the constitutive relation of a fluid can be rigorously approximated
by a simpler relation in an almost one dimensional flow. For instance, in a flow of
Newtonian fluid, the constraint is given by the relation σ = 2η D which is written,
in the case of the almost one dimensional flow describes above:

σ =
1

ε

(
0 η∂zu

η∂zu 0

)
+ O(1). (169)

7.2. FENE model for thin flows. Let us consider a polymer whose stress be-
havior is given by the FENE model, i.e. such that the relation between the constraint
and velocity obeys the relations (14) and (28). Let us suppose that the flow is almost
one dimensional, as defined in the preceding paragraph, so that the velocity field is
written ∇xu = 1

ε∇xu0 +O(1). Moreover, in order to observe the microscopic effects,
let us assume that De is of order of ε (for the sake of simplicity, it signifies that we
replace De by εDe). In fact this assumption is only due to the definition of the Debo-
rah number. In fact, this definition (see the relation (15)) uses a characteristic length
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and a characteristic velocity. Since, in the thin film case, two characteristic velocities
exist (U⋆ and V⋆) it is sufficient to define the number of Deborah as:

De =
ζV⋆

4L⋆H
. (170)

Remark 7.1. About this choice for the size of the Deborah number De, notice
that, concerning the Oldroyd model, the same remark is essential if we are interested
in the non-common effects of elasticity (see [3] for more explanations). If the Deborah
number De is not correctly correlated with the small parameter ε then either the effects
of elasticity are invisible (in the case where De is too small with respect to ε) or the
effects are translated by additional viscous contributions (in the case where De is too
large).

In this case, denoting by ψε the probability distribution function of the dumbbell
orientation, the Fokker-Planck equation (14) corresponds to equation (148). We know,
according to the preceding parts and in particular according to theorem 6.1, that the
solution of this equation (148) behaves like the solution of equation (149) when ε
becomes small.
We deduce that the polymeric contribution of the stress for an almost one dimensional
flow is written

σP (t,x) = σ0(x) + O(ε) for all (t,x) ∈ R+ × Ω, (171)

where σ0 is given by the relation (28), in which ψ is the solution of the equation (149).
It is consequently enough to solve this equation (149) to obtain an approximation at
order 0 of the stress. Moreover, according to the work of Bird et al. [7, Equation 13.5-
15, p. 79] (see also the part 2.3 of this paper) a development of the solution ψ of the
equation (149) for small Deborah numbers (or in other words close to an equilibrium
state) is given by:

ψ(x,Q) = ρM(Q)

(
1 +

De
2

D(x) : Q ⊗ Q +
De2
4

(
1

2
(D(x) : Q⊗ Q)2

− 1

15
〈‖Q‖4〉eqD(x) : D(x) +

4δ2

2δ2 + 7
(1 − ‖Q‖2

2δ2
)(D(x)

· W(x)) : Q⊗ Q

)
+ O(De3)

)
,

(172)

where the notation 〈 · 〉eq corresponds to
∫
B
· ρM(Q) dQ, and D(x) and W(x) are

respectively the symmetric and skew-symmetric part of the velocity gradient ∇xu(x).

Since the relation between the stress σ and the probability density ψ is a linear
relation, we can directly deduce a development of σ using the development of ψ. We
have

σ0(x) = σeq + De σ(1) + De2 σ(2) + O(De3), (173)

where each term can be determined using the relation (28) and the development (172)
of ψ. For instance, the equilibrium contribution ρM(Q) provides the term of order 0
in the following way:

σeq =
λρ

J



∫

B

Q⊗ Q

(
1 − ‖Q‖2

δ2

) δ2

2 −1

dQ


− λρ Id (174)
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where J is the normalisation constant given by formula (17) p. 223. In the 3-
dimensional case, we explain this contribution using the spherical change of coor-
dinates (see [13] for more details):

]0, δ[×]0, π[×]− π, π[ −→ B

(r, θ, ϕ) 7−→ (r sin θ cosϕ, r sin θ sinϕ, r cos θ),
(175)

whose the jacobian is given by Jac(r, θ, ϕ) = r2 sin θ. We obtain the following form
for the equilibrium contribution to the stress:

σeq =



a 0 0
0 a 0
0 0 −λρ


 with a =

4λρπβ(4)

3J
− λρ. (176)

This expression makes the β function defined by β(q) =

∫ δ

0

rq
(
1− r2

δ2

) δ2

2 −1

dr appear.

Remark 7.2.

- This β function can be defined using the classical Euler integrale of the first
kind:

β(q) =
1

2
δ(q−1)/2Eul

(q + 1

2
,
δ2

2

)
where Eul(x, y) =

∫ 1

0

tx−1(1 − t)y−1dt. (177)

- In the same way, the constant J and the term 〈‖Q‖4〉eq appearing in equa-
tion (172) can be written using the Euler integrale:

J = 2πδ3Eul
(3

2
,
δ2 + 2

2

)
and 〈‖Q‖4〉eq = 4πβ(6). (178)

Thereafter we will see that an important case corresponds to the shear flow, i.e. when
the tensor of the deformations takes the following form:

D =




0 γ̇ 0
γ̇ 0 0
0 0 0


 . (179)

where the coefficient γ̇ is called the shear rate. In that case, the expression of the
stress is determined relatively easily (see [13]). We have

σ(1) =




0 b γ̇ 0
b γ̇ 0 0
0 0 0


 and σ(2) =




(c+ d) γ̇2 0 0
0 (c− d) γ̇2 0
0 0 0


 (180)

where the constant b, c and d are explicitely given with respect to the function β, the
constant normalisation J and the physical constant λ, ρ and δ:

b =
4λρπβ(6)

15J
, c =

λρπ

315 J

(
9β(8) − 56πβ(4)β(6)

)
,

d =
4λρπ

15 J (2δ + 7)

(
2δβ(4) − β(6)

)
.

(181)
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Thus, the developments with order 2 of each non constant component of the stress
for shear flow are written (only for the polymeric contribution):





σ11
0 = a+ (c+ d)De2 γ̇2 + O(De3)
σ12

0 = bDe γ̇ + O(De3)
σ22

0 = a+ (c− d)De2 γ̇2 + O(De3).
(182)

Since b 6= 0 and d 6= 0, these relations highlight the tangential stresses appearing at
the order 1 as well as the normal efforts at the order 2. In other words, it is natural
to propose as asymptotic model with the FENE model in thin flows, the following
constitutive relation:

σP = a Id + bDeD + cDe2 D2 + dDe2 AD2 with A =

(
1 0
0 −1

)
. (183)

7.3. Applications to viscoelastic laminar boundary layers. Boundary
layer flow for non-Newtonian fluids has been studied in some cases: for a second
grade fluid (see for instance [31]), for a Walter’s B fluid in [5], for an Oldroyd-B fluid
in [4] and more recently for a FENE-P fluid in [33, 34]. In virtue of what was pre-
sented previously, we can determine which will be the dominant terms induced by the
FENE model in the conservation equations for the boundary layers study.

ε≪ 1
U(x)

Fig. 5. Boundary layer geometry.

More precisely, we are interested in the case of plane flows in layers neighboring with
a rigid wall. Considering flows in a thin layer of thickness of the order ε ≪ 1, the
dynamic equation of equilibrium and the incompressibility condition can be written
in a the non-dimension form in a half space above a given surface11.





u∂xu+ v∂zu = −∂xp∗ + ∂zσ
12 + ∂x(σ

11 − σ22) + O(ε)

∂zp
∗ = 0 + O(ε)

∂xu+ ∂zv = 0.

(184)

For such an approach, the boundary conditions are the following

u = v = 0 on the surface

and u = U far from the surface.
(185)

In this model, which comes from the classical conservations laws (see equations (1)) in
thin domains, notice that the modified pressure p∗ corresponds to p∗ = p− σ22. The

11See for instance [48] and notice that this expression strongly depends on the choice on adimen-
sionment for each component σij of the stress tensor. If we want to reveal at the same time the
normal efforts and the shear stress then the expression is that given by the relation below.
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concept of a viscoelastic boundary layer may be based on intuitive rather than physical
assumptions. In numerous practical situations there exists some sufficiently thin layer
close to the wall in which viscoelastic effects are meaningful and the outside flow is
exactly an in-viscid one, governed by the Euler equations. Under these assumptions,
the external flow is described by

dxp
∗ = −UdxU. (186)

Remark 7.3.

- To obtain these kinds of models, it is necessary to make assumptions on the char-
acteristic size of the pressure p and of the Reynolds number Re. This non-dimensional
number represents the relationship between the inertias and the viscous forces. It is
defined by Re = µU⋆L⋆

η where µ is the density and η the viscosity of the fluid. More

exactly, the model (184) is obtained when the pressure is of the order 1 and that the
Reynolds number is of the order 1/ε2.

- In the Newtonian fluid case, the system (184) leads to the Prandtl equations.
By adding the expression of the pressure (186), we obtain




u∂xu+ v∂zu = UdxU +

1

Re∂
2
zu

∂xu+ ∂zv = 0.
(187)

For this Newtonian model it was shown (see for instance [39]) that self-similar solu-
tions for these equations exist.

For a viscoelastic fluid described by the micro-macro FENE model we know that the
stress can be expressed, in the neighborhood of an equilibrium, by the relations (182).
In particular the polymeric contribution gives

σ12
0 = bDe ∂zu+ O(De3, ε) and σ11

0 − σ22
0 = 2dDe2 (∂zu)

2 + O(De3, ε), (188)

whereas the newtonian contribution reads σ12
N = 1

Re∂zu and σ11
N − σ22

N = 0. To give
an account of these contributions in the boundary layer, it will thus be necessary to
be interested in the following model:




u∂xu+ v∂zu = UdxU +

( 1

Re + bDe
)
∂2
zu+ 2dDe2 ∂x((∂zu)2)

∂xu+ ∂zv = 0.
(189)

These governing equations being derivated, the possibility of self-similar solutions can
be discussed. It is also interesting to understand the effect of the Deborah number
on such flows. If it is clear that its effect at first order influences only viscosity, its
effect at second order brings terms of normal forces which will have a considerable
effect on the solutions. A theoretical and numerical work on this subject is currently
in preparation, see [13].

7.4. Applications to lubrication problems. We presented in the preceding
paragraph an example of an almost one dimensional geometry. It is to be noticed
that this kind of anisotropy is very usual in another domain of applications. This
is the case in lubrication studies which are mainly devoted to thin film flow, in the
study of the spreading of tears or in the description of polymers through thin dies.
In such fields, some particular classes of non-Newtonian fluids are often considered.
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This includes the Bingham flow or the quasi-Newtonian fluids, see [43]. In lubrication
problems, the elastic character of a fluid seems to play a considerable part. In this
framework, viscoelastic models of thin film fluids were already studied by J. Tichy [44]
for the Maxwell model of viscoelasticity and by G. Bayada et al. [3] for models obeying
a Oldroyd-B relation.

ε≪ 1

s

Lubrication geometry.

More precisely, we are interested in the two-dimensional case (the three dimensional
case is similar) and consider flows in a thin layer of thickness h(x) of order ε ≪ 1.
Moreover, for application, one of the boundaries has a non-null velocity s (see previous
figure). As in the preceding application developed in part 7.3, we introduce the
pressure p∗ = p− σ22. The main difference with the previous model is the fact that
in lubrication problems the flow is controlled more by the pressure forces than by
turbulences. In other words, p∗ is of the order of 1/ε2 whereas Re is of the order
of 1. The dynamic equation of equilibrium and the incompressibility condition can
be written in the non-dimension form in a domain confined between two surfaces





−∂2
zu+ ∂xp

∗ = ∂zσ
12 + ∂x(σ

11 − σ22) + O(ε)

∂zp
∗ = 0 + O(ε)

∂xu+ ∂zv = 0.

(190)

According to the previous presentation and considering that the fluid adheres to the
walls, the physically interesting conditions at the boundary are the following:

u = v = 0 on the top surface

and u = s, v = 0 on the bottom surface.
(191)

Remark 7.4. In the Newtonian fluid case, there is no polymer contribution in
the stress. That is σ = 0 in the model (190). Integrating twice the first equation
of (190) with respect to z we obtain the velocity u with respect to the pressure p∗.

Then, using the free-divergence condition as ∂x

(∫ h(x)

0
u(x, z)dz

)
= 0, it possible in

this case to deduce an equation on the pressure:

∂x

(h3

12
∂xp

∗
)

= ∂x

( h

2Res
)
. (192)

This equation, known under the name of Reynolds equation, is a parabolic equation
whose study is relatively simple (even in dimension 3). It was first obtained in a
heuristic way by O. Reynolds [38] then, rigorously carried out from the Stokes equa-
tions by G. Bayada and M. Chambat [2].

If the flow is a viscoelastic flow of the FENE type, using the approximation (182)
suggested for the almost one dimensional flows, the equation (190) is written only
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conserving the principal terms:




−
( 1

Re + bDe
)
∂2
zu+ ∂xp

∗ = 2dDe2 ∂x((∂zu)2)

∂zp
∗ = 0

∂xu+ ∂zv = 0.

(193)

The following questions are then natural. Can we deduce, as in the Newtonian case, a
generalized Reynolds equation about the pressure? What are the effects of elasticity
(i.e. the effect of the Deborah number De) on this models?

7.5. Other applications to free surface flows, to microfluidic, to
Shallow-Water equations or fluid-structure interaction in biology?. In addi-
tion to the two preceding applications, we can use the reduced FENE model in many
different physical contexts. Thus, the Shallow-water equations which describe a flow
taking into account a free surface can adapt to the cases of the viscoelastic fluids of
the FENE type. Materials involved in geophysical flows exhibit non-Newtonian rheo-
logical properties and, over the last few years, a great deal of work has been expended
to adapt the shallow-water equations to non-Newtonian fluids. The long asymptotic
wave usually used in these problems allows the model suggested in this paper to be
used.

ε≪ 1

Free surface

Application to non-newtonian Shallow-Water equations.

Many applications relate to the microfluidic industry. One of the objectives being
to understand the flows in microchannels in order to be able to carry out mixtures
and chemical reactions with very little fluid. This type of problem enters completely
within the framework of our study as soon as the fluids concerned have viscoelastic
behavior. This type of approach can be adapted, for example, to interior stagnation
point flows of viscoelastic liquids which arise in a wide variety of applications including
extensional viscometry, polymer processing and microfluidics, see [47].

ε≪ 1

Application to microfluidic devices.

To finish, we can naturally think of biological application and in particular to blood
circulations which have a viscoelastic behavior and which take place in arteries, typ-
ically almost one dimensional mediums where the model suggested would make it
possible to understand “simply” the micro-macro effect. Two different approaches
can be considered, either we study the cellular dynamics in the arteries, or we focus
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on the modelling of the fluid-structure interaction mechanism in vascular dynamics.
See for instance [17].

ε≪ 1

Cellular dynamics in the arteries / fluid-structure interaction.

In all these physical contexts, the boundary conditions must be specified and adapted
to the physical problems. Classically, as for the two examples illustrated previously
(see paragraphs 7.3 and 7.4), the natural conditions are the Dirichlet type conditions
on the velocity field. We can more generally introduce other wall laws for example
by taking account of the slip of certain fluids with the walls.
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