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The aim of this paper is to propose a method to model and numerically simulate the inertial migration 

of particles in three-dimensional channels. The initial problem, coupling Navier–Stokes equations to the 

equations modeling the displacement of a spherical particle immersed in the fluid, is replaced by a first 

order expansion with respect to a small Reynolds number. We reduce the computation of the velocity of 

a spherical particle situated at a given position in a channel to the numerical solutions of several Stokes 

elementary problems. The proposed method is employed to numerically approach the steady solutions 

for different domain configurations. 
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. Introduction 

Segré and Silberberg observed in 1960s that particles in sus-

ension in a Poiseuille flow migrate, under the action of inertial

orces, to an annular region having the same center as the circu-

ar section of the channel [16] . More recently, inertial migration of

articles in microfluids was intensively studied in the perspective

f very promising applications to micro-particles filtration and sep-

ration [17] . These applications use an early observation of Segré

nd Silberberg that different sized particles have different equi-

ibrium regions, or, with other words, different focusing positions.

hile for channels of circular sections the equilibrium regions are

ell understood, for channels of less symmetric sections the situ-

tion is far from being clear, different experimental or numerical

tudies giving different numbers of equilibrium points in cases as

imple as a channel with rectangular section [2–4,12,13] . 

The mathematical models for the inertial migration of parti-

les in fluid flows have mostly been studied for channels with cir-

ular section. The radial symmetry of the section allows in that

ase to the simplification of the model by reducing the number

f variables. Using the method of matched asymptotic expansions

o model the disturbance of the flow due to the presence of a

article, at small Reynolds numbers, it is possible to compute the
∗ Corresponding author. 
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quilibrium positions in circular channels [1,15] . More recently, a

ethod based on the expansion of the solution of the fluid-particle

roblem with respect to the Reynolds number was proposed [8] .

his method, formulated in a two-dimensional framework, allows

he computation of the inertial equilibrium positions of a ball in

 two dimensional channel for small Reynolds numbers by solv-

ng several stationary Stokes equations (the so-called elementary

roblems ). The fact that there are only stationary Stokes problems

o be solved is an advantage, from a computational perspective,

ith respect to other, more complex, approaches, such as directly

olving Navier–Stokes equation coupled with a moving rigid struc-

ure [5,11] . 

The aim of the present work is to extend the method in [8] to

 three-dimensional setting. More precisely, we reformulate the

hree-dimensional problem in order to emphasize a structure sim-

lar to the one obtained in the two dimensional framework and

llowing the application of the ideas proposed in [8] . As in the

wo-dimensional case, for low Reynolds numbers, the computa-

ion of the inertial velocity of a spherical particle immersed in a

hree-dimensional fluid flowing in a channel is reduced to a small

umber of stationary Stokes problems. Even if numerically solv-

ng a Stokes equation is not very difficult, the presence of a high-

umber of unknowns in this case and the non-trivial geometry

f the three-dimensional domain, require a finely-tuned numeri-

al strategy. Particularly, we exploit the symmetry of the domain

ith respect to the plane orthogonal to the direction of the chan-

el and containing the center of the ball, in order to reduce by half

https://doi.org/10.1016/j.compfluid.2019.104246
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Fig. 1. Three-dimensional configuration. 
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the size of the problem. The mixed finite element method is em-

ployed to discretize the model on a non-uniform mesh which is

much more refined on the surface of the ball than on the cylin-

der’s walls. These features give a method which is fast enough to

allow the analysis of a high number of geometrical configurations

in an acceptable amount of time on a recent computer. We present

in detail the development of the method, its implementation and

we illustrate it for several channels with different sections. After-

wards, we validate the proposed method by comparing our numer-

ical results to the well known results of Segré and Silberberg in a

circular channel. More precisely, we obtain the same equilibrium

positions just as in the physical experiments. The two situations

were considered: when the gravity field is aligned to the channel’s

direction and when the gravity field forms a non-zero angle with

the direction of the channel. Finally, we apply the method for other

less symmetric geometries in order to investigate the inertial equi-

librium positions of a particle immersed in a fluid flowing in such

a cylinder. These numerical experiments were motivated by recent

applications of the inertial migration of particles in a fluid to filtra-

tion and particle separation. The results we obtained are similar to

some of the results in the recent literature and apparently contra-

dicts other. Nevertheless, the observed disagreement could be ex-

plained by the fact that the proposed method is appropriate only

for low Reynolds numbers. 

The remaining part of the paper is structured as follows. In

Section 2 we introduce the framework and we describe the model

in detail. Section 3 introduce the elementary problems and study

their properties. In Sections 4 and 5 we compute the inertial ve-

locity of a particle placed in a Stokes flow and in a Navier-Stokes

flow respectively (developed at the first order with respect to the

Reynolds number). Finally, in Section 6 we propose a numerical

method for the computation of the particle’s inertial velocity and

we numerically illustrate the method for different configurations.

An important effort is employed to locate the steady solutions and

the corresponding focusing positions. 

2. Notation and description of the model 

We consider a ball B immersed in a fluid which fills the inte-

rior of the cylinder ω × R ⊂ R 

3 . Each point of the bounded open

domain ω ⊂ R 

2 is parametrized by a pair of two reals so that the
osition of the center of the ball is determined by its coordinates

 h, k ) (due to the invariance with respect to the direction of the

ylinder, the last coordinate is useless). In practice, any coordinate

ystem can be used. For example, polar coordinates are appropriate

n the case of a disk, and Cartesian coordinates are better suited

hen ω is a rectangle. 

We write the equations modeling this situation in a frame

dapted to the configuration described above. We then introduce

he orthonormal frame ( O , e 1 , e 2 , e 3 ) as follows (see Fig. 1 ): 

• the origin O coincides with the center of the ball B , 

• the direction of e 2 corresponds to the direction of the cylinder, 

• the plane O e 2 e 3 generated by the vectors e 2 and e 3 contains the

gravity field. 

In this frame, the ball B of radius R > 0 is defined by 

 = 

{
x = (x, y, z) ∈ R 

3 ; x 2 + y 2 + z 2 < R 

2 
}
. 

ts boundary is denoted by ∂B = S and its outward unitary normal

s denoted by n . 

Thus, the orientation of the cylinder with respect to the verti-

al position will be given according to an angle θ : if θ = 0 then

he axis of the cylinder is assumed to be vertical (aligned with the

ravity vector), if θ = 

π
2 then the axis of the cylinder is horizontal.

he intermediate values of θ ∈ ]0 , π2 [ make it possible to obtain any

onfiguration. More precisely, the gravity force may be written as

 = (0 , g cos θ, −g sin θ ) . 

The fluid domain corresponds to � = 

(
ω × R 

) \ B whereas its

ateral boundary is denoted by � = ∂ω × R . It is important to note

hat this domain � should be labeled �h,k since the position of

he ball B with respect to the lateral boundary � depends on the

arameters h and k . 

In what follows, we are particularly interested in steady mo-

ions of the fluid-structure system described above, that is, the sit-

ations where the translational velocity U and the angular veloc-

ty ω of the ball are constant in time, and the motion of the fluid

s seen from a frame attached to the ball and moving with veloc-

ty U is independent of time. The fluid flow is also an unknown of

he problem so we aim to determine the velocity v of the fluid as

ell as its pressure p . 
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Fig. 2. Two dimensional configuration. 
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Mathematically, our problem can be formulated as follows. Find

( v , p ), ( U , ω), ( h, k )) satisfying the equations 

 

 

 

 

 

 

 

 

 

 

 

div σ = ρ f v · ∇ v , div v = 0 , σ = 2 μ f D v − p Id in �, 

v 
∣∣
�

= −U , v 
∣∣

S 
= ω × x , 

lim | y |→ + ∞ 

( v (x, y, z) − V 0 (x, z) e 2 ) = −U for all (x, z) ∈ ω, ∫ 
S σ · n ds ( x ) = −m g , 

∫ 
S x × σ · n ds ( x ) = 0 . 

(1) 

The three relationships in the first line of this system cor-

espond to the momentum conservation of the fluid, the mass

onservation of the fluid (reduced to a divergence free relation

ince we assume that the fluid is incompressible) and the New-

onian constitutive assumption elucidating the stress σ with re-

pect to the velocity and the pressure, respectively. The physical

onstants ρ f and μf correspond to the fluid density and the fluid

iscosity, respectively. It should also be noted that forces due to

ravity are not directly present in the conservation balance. In fact,

hey were integrated into the pressure term by writing g = ∇ ̃p

ith 

˜ p (x, y, z) = g cos (θ ) y − g sin (θ ) z. 

The second and the third lines of the system (1) correspond

o the boundary conditions imposed on the velocity field. These

re Dirichlet-like conditions knowing that the model is written in

 U -velocity translation frame: we assume adherence on the ball

nd on the lateral walls. The condition at the infinite ends of the

ylinder is given by a Poiseuille-type condition corresponding to a

ow without the ball. More precisely, a flow in the cylinder ω × R ,

atisfying the Navier–Stokes equation with homogeneous Dirichlet

oundary condition (on �) has velocity and pressure fields given

y: 

 0 (x, y, z) = V 0 (x, z) e 2 , p 0 (x, y, z) = P 0 (y ) + g cos (θ ) y − g sin (θ ) z, 

(2) 

here V 0 is the solution of the elliptic problem 

−	x,z V 0 = γ in ω, 

V 0 

∣∣
∂ω 

= 0 , 
(3) 

nd where P 0 is given by P 0 (y ) = γ y . The constant γ is evaluated

o that the flux ∫ ω V 0 d x d z corresponds to an imposed value �. 

The two last equalities in system (1) express the equilibrium of

he particle (force and momentum). The two external forces acting

n the particle being due to the gravity and to the buoyancy, we

ntroduce the quantity m depending on the difference between the

olid density ρs and the fluid density ρ f : m = 

4 
3 πR 3 (ρs − ρ f ) . 

In order to write a model in a dimensionless form, we introduce

he following changes of variables and of unknowns: 

 = L x � , v = V v � , σ = 

μ f V 

L 
σ� , p = 

μ f V 

L 
p � , U = V U 

� 
, 

 = 

V 

L 
ω 

� , R = LR 

� , V 0 = 

�

L 2 
V 

� 
0 , 

here L is the characteristic length of the domain ω and V = 

√ 

gR

s the reference velocity. The system (1) becomes the following di-

ensionless system (for simplicity all the stars ( � ) appearing as

pper indices are omitted): 

 

 

 

 

 

 

 

 

 

 

 

div σ = Re v · ∇ v , div v = 0 , σ = 2 D v − p Id in �, 

v 
∣∣
�

= −U , v 
∣∣

S 
= ω × x , 

lim | y |→ + ∞ 

( v (x, y, z) − V 0 (x, z) e 2 ) = −U for all (x, z) ∈ ω, ∫ 
S σ · n ds ( x ) = Ga Re ( cos (θ ) e 2 + sin (θ ) e 3 ) , ∫ 

S x × σ · n ds ( x ) = 0 . 

(4) 
The scalar velocity V 0 appearing in the third equation of sys-

em (4) is the unique solution to 

x,z V 0 = c on ω, 

∫ 
ω 

V 0 d x d z = Fr , V 0 

∣∣
∂ω 

= 0 , 

here c is a constant. Obviously, in the system (4) , we have � =
ω × R 

) \ B where ω ⊂ R 

2 is a bounded domain of characteristic

ize 1 and where B is the ball centered in (0,0,0) and with ra-

ius R 
L . The dimensionless numbers Re , Fr and Ga correspond to

he Reynolds number, the Froude number and to the Gravity num-

er respectively. They are defined from physical quantities charac-

erizing the situation: 

e = 

ρ f V L 

μ f 

, Fr = 

�

L 2 V 

and Ga = 

4 π

3 

(
R 

L 

)
2 
(

ρs 

ρ f 

− 1 

)
. 

(5) 

emark 2.1 (2D) . The three-dimensional model generalizes the

wo-dimensional setting described in Fig. 2 . In the two-

imensional case, the variable x is not present and the position

ector is given by x = (y, z) . The flow ( v 0 , P 0 ) corresponds to the

sual Poiseuille flow in a channel. 

emark 2.2 (Slip boundary condition) . We can consider the case

here slip is allowed at the fluid/solid interface, through a Navier

ondition. This consists in rewriting the boundary condition v 
∣∣

S 
=

 × x as follows: 

 · n = 0 and v + ξ n × ( σ · n ) × n = ω × x . (6)

n other words, only the normal component of the relative velocity

f the fluid is zero, to ensure impermeability. The tangential com-

onents are non-zero, and are proportional to the stress constraint,

ith constant slip length ξ > 0. In the same way, it is also possible

o consider slip on the lateral boundary �. 

System (4) is in fact the stationary case of an evolutionary

odel. The boundary condition v 
∣∣
�

= −U must involve a non-

enetration condition. Given the shape of the domain (a cylinder),

his condition implies that a physical steady solution must satisfy

 1 = 0 and U 3 = 0 . We then give the following definition: 

efinition 2.1. We call a steady solution to system (4) any solution

 v , p , U , ω) such that U 1 = U 3 = 0 . 

. Study of elementary problems 

The construction of the solution for problem (4) is based on the

se of the so called elementary problems . More precisely, we will
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consider the following Stokes problems, for i ∈ { 1 , 2 , . . . , 6 } : ⎧ ⎨ ⎩ 

div σ(i ) = 0 , div v (i ) = 0 , σ(i ) = 2 D v (i ) − p (i ) Id in �,

v (i ) 
∣∣
�

= 0 , v (i ) 
∣∣

S 
= βi , 

lim | y |→ + ∞ 

v (i ) (x, y, z) = 0 for all (x, z) ∈ ω, 

(7)

where βi = e i for i ∈ {1, 2, 3} and βi = e i −3 × x for i ∈ {4, 5, 6}. 

The existence and uniqueness of the regular solutions ( v ( i ) , p ( i ) )

of (7) is classical. 

Remark 3.1. Note that every couple ( v ( i ) , p ( i ) ) depends on the pa-

rameters ( h, k ) only through the definition of the fluid domain �.

Furthermore, v ( i ) , p ( i ) and all their derivatives decay exponentially

fast to zero as | y | → + ∞ , see [6, Chap. XI] . From a numerical point

of view, it is therefore reasonable to solve these linear problems in

a bounded domain given by �M 

= � ∩ { (x, y, z) ∈ R 

3 ; −M < y <

M} , for M large enough. 

Proposition 3.1. The matrix A ∈ M 6 , 6 (R ) defined by 

A i j = 

∫ 
S 

( σ(i ) · n ) · β j ds ( x ) , 1 ≤ i, j ≤ 6 

is symmetric. Moreover, half of its coefficients are zero and the struc-

ture of this matrix is given by 

A = 

⎛ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 

A 11 0 A 13 0 A 15 0 

0 A 22 0 A 24 0 A 26 

A 31 0 A 33 0 A 35 0 

0 A 42 0 A 44 0 A 46 

A 51 0 A 53 0 A 55 0 

0 A 62 0 A 64 0 A 66 

⎞ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 

. 

The matrices obtained by keeping only the even rows and columns

and by keeping the odd rows and columns, respectively, denoted by 

A I = 

⎛ ⎝ 

A 11 A 13 A 15 

A 31 A 33 A 35 

A 51 A 53 A 55 

⎞ ⎠ and A P = 

⎛ ⎝ 

A 22 A 24 A 26 

A 42 A 44 A 46 

A 62 A 64 A 66 

⎞ ⎠ 

are invertible. 

Proof. Multiplying the first equation of (7) by v ( j ) and integrating

by parts, we deduce that 

A i j = 2 

∫ 
�

D v (i ) : D v ( j) d x . 

The symmetry immediately follows. 

The cancellation of certain coefficients is a consequence of the

parity of the solutions with respect to the variable y . For instance,

the components v (1) 
1 

and v (1) 
3 

are even (with respect to y ), as well

as the pressure p (1) , whereas v (1) 
2 

is odd. We deduce that the com-

ponents σ(1) 
11 

, σ(1) 
22 

, σ(1) 
33 

, σ(1) 
13 

and σ(1) 
31 

are even. Thus ( σ(1) · n ) · e 2 
is odd: its integral over S is zero, that is A 12 = 0 . 

To prove the inversibility of matrices A I and A P , we proceed

as follows: let ̂ v = 

∑ 

i λi v (i ) and 

̂ p = 

∑ 

i λi p 
(i ) . By linearity, ( ̂  v , ̂  p )

satisfies a Stokes system. Multiplying this Stokes equation by ̂  v and

integrating by parts, we obtain ∑ 

i, j 

λi λ j A i j = 2 

∫ 
�

| D ̂

 v | 2 d x ≥ 0 . 

Taking λ2 = λ4 = λ6 = 0 , we obtain that the quadratic form asso-

ciated to the matrix A I is positive definite, and thus that A I is in-

vertible. Similarly, if we take λ1 = λ3 = λ5 = 0 we deduce that A P 

is invertible. �
In order to find the conditions at infinity, we define ( v ( ∞ ) , p ( ∞ ) )

he unique solution of the following problem: 

 

 

 

div σ(∞ ) = 0 , div v (∞ ) = 0 , σ(∞ ) = 2 D v (∞ ) − p (∞ ) Id in �, 

v (∞ ) 
∣∣
�

= 0 , v (∞ ) 
∣∣

S 
= 0 , 

lim | y |→ + ∞ 

( v (∞ ) (x, y, z) − V 0 (x, z) e 2 ) = 0 for all (x, z) ∈ ω. 

(8)

emark 3.2. In the two dimensional situation, only vectors v (2) ,

 

(3) , v (4) and v ( ∞ ) are relevant and the matrices A I and A P be-

ome 

 

(2 d ) 
I 

= 

(
A 33 

)
and A 

(2 d ) 
P 

= 

(
A 22 A 24 

A 42 A 44 

)
. 

emark 3.3 (Slip boundary condition) . If the slip boundary condi-

ions are considered at the fluid/solid interface (see Remark 2.2 ),

he boundary condition v (i ) 
∣∣

S 
= βi in system (7) becomes 

 

(i ) · n = 0 and v (i ) + ξ n × ( σ(i ) · n ) × n = βi . (9)

roposition 3.1 remains also true also in this case. Indeed, we

ave 

 i j = 2 

∫ 
�

D v (i ) : D v ( j) d x + ξ

∫ 
S 

(( σ(i ) · n ) · n ) (( σ( j) · n ) · n ) ds ( x ) .

emark 3.4. Taking into account the symmetry of the domain

with respect to the plane O e 1 e 3 ), we can evaluate the coeffi-

ients A ij using only the values of the solutions of (7) , for i ∈
 1 , 2 , . . . , 6 } in the half domain �+ : 

 i j = 4 

∫ 
�+ 

D v (i ) : D v ( j) d x , (10)

here 

+ = { (x, y, z) ∈ � ; y > 0 } . 
ince it is sufficient to consider the elementary problems on the half

omain �+ , this remark is useful for the numerical implementa-

ion of the proposed method. We therefore divide by two the size

f the linear system to solve. 

. Steady solutions and Stokes flow 

This section is devoted to a preliminary study of the Stokes

ow, formally obtained by setting Re = 0 in (4) . More precisely,

e consider the following Stokes system: 

 

 

 

 

 

 

 

div σS = 0 , div v S = 0 , σS = 2 D v S − p S Id in �, 

v S 
∣∣
�

= −U S , v S 
∣∣

S 
= ω S × x , 

lim | y |→ + ∞ 

( v S (x, y, z) − V 0 (x, z) e 2 ) = −U S for all (x, z) ∈ ω, ∫ 
S σS · n ds ( x ) = 0 , 

∫ 
S x × σS · n ds ( x ) = 0 . 

(11)

or any ( h, k ), we explicitly determine a solution to this problem as

 linear combination of solutions to the elementary problems (7) .

or this purpose, given ( U S , ω S ) ∈ R 

3 × R 

3 , we consider the solu-

ion ( v S , p S ) to the first three lines in (11) . Multiplying the first

quation of (11) by v ( i ) and integrating by parts, we obtain that for

very i ∈ { 1 , 2 , . . . , 6 } we have 

 

∫ 
�

D v S : D v (i ) d x = 

∫ 
S 

( σS · n ) · βi ds ( x ) . (12)

iven the definition of the vectors βi , the last two conditions of

ystem (11) are fulfilled if and only if, for every i ∈ { 1 , 2 , . . . , 6 } we

ave 
 

D v S : D v (i ) d x = 0 . (13)

�
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oreover, multiplying the first equation of (7) by v S − V 0 e 2 + U S ,

e get: 

 

∫ 
�

D v S : D v (i ) d x = 

∫ 
S 

( σ(i ) · n ) · ( ω S × x − V 0 e 2 + U S ) ds ( x ) 

+2 

∫ 
�

D (V 0 e 2 ) : D v (i ) d x . (14) 

inally, the last two conditions of system (11) are equivalent to

hoose ( U S , ω S ) ∈ R 

3 × R 

3 such that for every i ∈ { 1 , 2 , . . . , 6 } the

ollowing equality is verified: 
 

S 

( σ(i ) · n ) · U S ds ( x ) + 

∫ 
S 

( x × σ(i ) · n ) · ω S ds ( x ) 

= 

∫ 
S 

( σ(i ) · n ) · v 0 ds ( x ) − 2 

∫ 
�

D (V 0 e 2 ) : D v (i ) d x . (15) 

hese six linear equations can be put in a matrix form using the

atrix A introduced in the previous section: 

 

⎛ ⎜ ⎜ ⎜ ⎜ ⎝ 

U 1 

U 2 

U 3 

ω 1 

ω 2 

ω 3 

⎞ ⎟ ⎟ ⎟ ⎟ ⎠ 

= 

⎛ ⎜ ⎜ ⎜ ⎜ ⎝ 

b 1 
b 2 
b 3 
b 4 
b 5 
b 6 

⎞ ⎟ ⎟ ⎟ ⎟ ⎠ 

, (16) 

here, for any i ∈ { 1 , 2 , . . . , 6 } the right-hand side of the equality

s given by: 

 i = 

∫ 
S 

( σ(i ) · n ) · v 0 ds ( x ) − 2 

∫ 
�

D (V 0 e 2 ) : D v (i ) d x . (17)

 symmetry with respect to the variable y argument shows that

 1 = b 3 = b 5 = 0 (see the proof of the Proposition 3.1 for simi-

ar computations). Thus, by rearranging the system (16) , it can be

ritten as: 

 I 

( 

U 1 

U 3 

ω 2 

) 

= 

( 

0 

0 

0 

) 

and A P 

( 

U 2 

ω 1 

ω 3 

) 

= 

( 

b 2 
b 4 
b 6 

) 

. (18)

atrices A I , A P being invertible, we deduce that the velocity U S 

ill have only one non-zero component (the component U 2 ), and

hat it could be expressed using the solution of a linear system. In

onclusion, we can state the following result: 

heorem 4.1. For any parameters ( h, k ), there exists a unique steady

olution ( v S , p S , U S , ω S ) to the system (11) . This solution is explicitly

iven by 

 S = U 2 v (2) + ω 1 v (4) + ω 3 v (6) + v (∞ ) − U 2 e 2 , 

p S = U 2 p 
(2) + ω 1 p 

(4) + ω 3 p 
(6) + p (∞ ) , 

 S = U 2 e 2 , 

 S = ω 1 e 1 + ω 3 e 3 , 

(19) 

here ( v ( i ) , p ( i ) ), i ∈ { 1 , 2 , . . . , 6 } , (resp. ( v ( ∞ ) , p ( ∞ ) ) ) are the solutions

f the elementary Stokes problems (7) (resp. (8) ), and where ( U 2 , ω 1 ,

 3 ) is the unique solution to A P X = b , the matrix A P and the source

erm b being respectively given in Proposition 3.1 and by (17) . 

roof. It is enough to verify that the proposed solution is in-

eed adapted and verifies all the relationships in system (11) .

he uniqueness directly follows from the linearity of the Stokes

quations. �

emark 4.1. For the two-dimensional case we obtain that for any

 ∈ ω, there exists a unique solution ( v S , p S , U S , ω S ) to the sys-

em (11) . This solution is explicitly given by 

 S = U 2 v (2) + ω 1 v (4) + v (∞ ) − U 2 e 2 , 

p S = U 2 p 
(2) + ω 1 p 

(4) + p (∞ ) , 

 S = U 2 e 2 , 

 S = ω 1 e 1 , 

(20) 
here ( U 2 , ω 1 , 0) is the unique solution to A 

(2 d ) 
P 

X = b (2 d ) 
, the ma-

rix A 

(2 d ) 
P 

and the source term b (2d) being respectively given in

emark 3.2 and by (17) by taking i = 2 , 4 . 

. Steady solutions for flows governed by Navier–Stokes 

quation 

From Galdi [7, Th 3.4, page 252] , we know that there is only

ne solution to the problem (4) when the Reynolds number Re 

s assumed to be small. Moreover, we know that this solution is

ontinuous with respect to the Reynolds number: 

 = v S + O 0 (Re ) , 

here the velocity v S corresponds to the solution for the Stokes

ystem (that is, the solution obtained in the previous section, see

heorem 4.1 ). 

Multiplying the first equation of the system (4) by the elemen-

ary velocity fields v ( i ) , we proceed as in the beginning of the pre-

ious section and we obtain the relations 

 

∫ 
�

D v : D v (i ) d x + Re 

∫ 
�
( v · ∇ v ) · v (i ) d x = 

∫ 
S 

( σ · n ) · βi ds ( x ) . 

(21) 

ollowing the same strategy as in the Stokes case, the solution of

he system (4) satisfies 

 I 

( 

U 1 

U 3 

ω 2 

) 

= −Re 

( 

c 1 
c 3 
c 5 

) 

− Ga Re 

( 

0 

sin θ
0 

) 

+ O 0 (Re 2 ) (22)

nd 

 P 

( 

U 2 

ω 1 

ω 3 

) 

= 

( 

b 2 
b 4 
b 6 

) 

− Re 

( 

c 2 
c 4 
c 6 

) 

+ Ga Re 

( 

cos θ
0 

0 

) 

+ O 0 (Re 2 ) , (23)

here the additional terms come from the non-linearity of the

avier–Stokes equations. For any i ∈ { 1 , 2 , . . . , 6 } , they are given by

 i = 

∫ 
�
( v S · ∇ v S ) · v (i ) . (24)

learly, the corresponding solution ( U 1 , U 3 , ω 2 ) to system (22) does

ot necessarily satisfy the conditions U 1 = U 3 = 0 required to ob-

ain a steady solution. More precisely, the system (22) is equivalent

o (using the fact that A 55 � = 0 ): 
 

 

 

 

 

 

 

 

 

(A 55 A 11 − A 

2 
15 ) U 1 + (A 55 A 13 − A 15 A 35 ) U 3 

= Re (A 15 c 5 − A 55 c 1 ) + O 0 (Re 2 ) 

(A 55 A 13 − A 15 A 35 ) U 1 + (A 55 A 33 − A 

2 
35 ) U 3 

= Re (A 35 c 5 − A 55 (c 3 + Ga sin θ )) + O 0 (Re 2 ) 

A 51 U 1 + A 53 U 3 + A 55 ω 2 = −Re c 5 + O 0 (Re 2 ) . 

(25) 

t first order with respect to the Reynolds number, the two first

quations of this system write 
 

 

 

(A 55 A 11 − A 

2 
15 ) ̃

 U 1 + (A 55 A 13 − A 15 A 35 ) ̃  U 3 = A 15 c 5 − A 55 c 1 

(A 55 A 13 − A 15 A 35 ) ̃  U 1 + (A 55 A 33 − A 

2 
35 ) ̃

 U 3 

= A 35 c 5 − A 55 (c 3 + Ga sin θ ) . 

(26) 

We can state now the following theorem. 

heorem 5.1. We consider the solution ( v , p , U , ω) to the sys-

em (4) associated to parameters ( h, k ) and to the Reynolds num-

er Re (which is supposed to be small enough to have a unique so-

ution). The asymptotic development of the velocity U with respect to

he Reynolds number takes the following form: 

 = (0 , U 2 , 0) + Re ( ̃  U 1 , ̃
 U 2 , ̃

 U 3 ) + O 0 (Re 2 ) , (27)

he components ˜ U 1 and ˜ U 3 being the solution of the linear sys-

em (26) . 
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The linear system (26) can be written as ( ̃  U 1 , ̃
 U 3 ) = G(h, k ) . The

quantity G(h, k ) represents, at first order in Re the components of

the force exerted by the liquid in the directions orthogonal to the

translational velocity of the disk (the lift). 

Corollary 5.1. The positions ( h, k ) ∈ ω of the ball providing steady so-

lutions of (4) (at first order in Re ) correspond to the zeros of the vec-

tor field G : ω → R 

2 . More precisely, the current lines of this field are

colinear with the projection of the ball trajectories to the plane O e 1 e 3 .

Remark 5.1. In the two dimensional situation, since A 55 = 0 , the

condition to have a steady state solution reads ˜ U 3 = 0 , which is

equivalent (at the first order) tp the condition c 3 = −Ga sin θ . Such

a condition can be viewed as 

G(h ) = 0 . 

The objective of the remaining part of this work is to describe

the strategy employed to numerically compute the vector field G
for channels of different sections ω. 

6. Numerical applications 

The aim of this section is to explain the implementation of the

method proposed in the previous sections and to illustrate numer-

ically the Segré-Silberberg effect [16] for cylinders having different

sections ω. A similar study was done in a two-dimensional situa-

tion using a similar approach in [8] . 

6.1. Implementation of the method 

In order to numerically implement the methodology described

in the previous section we used several software. Firstly, for the

description of the geometry of the half-domain �+ and for the

construction of a tetrahedral mesh of this domain, we employed

Gmsh [9] . Particularly, we replace the infinite domain �+ by

a truncated domain in the direction e 2 : �+ 
M 

= ω × (0 , M) , see

Remarks 3.1 and 3.4 for mathematical explanations. An example

of the geometry and of a non-uniform mesh of such a domain are

displayed in Fig. 3 . The boundary conditions on the left extremity

of the domain �+ 
M 

corresponding to y = 0 should be carefully tack-

led, taking into account the symmetry of the variables. Since we

have to compute several integrals on the surface S of the ball, we

consider non-uniform meshes which are much more refined on the

surface of the ball B than on the lateral boundary of the cylinder. 

For the numerical approximation of Stokes elementary prob-

lems (7) , for the computation of the matrices A P and A I and for

solving system (26) , we used FreeFem++ [10] . More precisely, we

numerically solve the weak formulations associated to these sys-

tems using P1b/P1 mixed finite elements combined with a pres-

sure stabilization technique. 
Fig. 3. The geometry and the mesh of domain �+ 
M=0 . 5 

for a cylinder with circular se
For every geometrical situation considered, i.e. for every sec-

ion ω and for every position ( h, k ) of the ball, we compute the

olutions of system (25) . Thus we obtain an approximation of the

ector field G provided by Corollary 5.1 

.2. Numerical illustrations 

In this subsection we numerically illustrate the proposed

ethod for different cross-sections ω. Firstly, we validate the

ethod in the case of a cylinder with a circular section consid-

ring two directions for the gravity field. Secondly, we study the

ynamic of a ball due to inertial forces in a cylinder with a rectan-

ular section. Finally, we consider the situation reported in [13] in

he context of particle separation using inertial focusing. 

In what follows we compute the solution ( ̃  U 1 , ̃
 U 3 ) of the linear

ystem (26) for different geometric configurations. Nevertheless, to

implify the notation, we drop the tilde on U i and we denote by G
he vector field G(h, k ) . 

.2.1. Cylinder with circular cross-section 

We consider cylinders with section ω being a disk of radius

 = 0 . 5 . The radius of the ball is set to R = 0 . 05 and the length of
+ 
M 

is chosen M = 0 . 5 . Such a length seems to be sufficiently large

uch that the L 2 -norms of the traces of solutions of elementary

roblems (7) on the boundary ω × { M } are close to the precision

f the numerical scheme employed to solve these problems. 

ravity field perpendicular to the plane O e 1 e 3 . First, we consider

he situation where the gravity field and the vector e 2 are colinear,

hich is equivalent to take θ = 0 . Therefore, taking into account

he symmetry of the disk, it is enough to take the center of the

all of coordinates (h, k ) = (0 , z) with z ∈ [0 , L − αR ) , where pa-

ameter α > 1 is such that the ball does not touch the lateral wall

f the cylinder. The first numerical experiment consists in com-

uting the solution of system (25) for twenty such different posi-

ions of the ball. For each geometry we considered a non-uniform

esh with a characteristic size c S = 0 . 0025 on the surface of the

all and c = 0 . 03 on the lateral boundary. For example, one such

esh consists of a number of 164784 tetrahedra when the ball is

ositioned at the center of the cross section. In Fig. 4 we display

he value of the component U 3 of the field G which corresponds

o the lift of the ball in the direction e 3 . Remark that the lift in

he direction e 1 is zero and that U 3 (0 , z) = −U 3 (0 , −z) . The result

llustrated in Fig. 4 is similar to the numerical results obtained

n a two-dimensional framework in [8] and is in agreement with

he experimental results in [14] . Concerning the positions of the

all for which steady solutions are obtained there is an unstable
ction ω of radius L = 0 . 5 , with a ball of radius R = 0 . 05 and of length M = 0 . 5 . 
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Fig. 4. Velocity U 3 of a ball situated at the position (0, z ) in a circular cylinder. 
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Fig. 5. Evolution of error ‖ ((U r 1 , U 
r 
3 , ω 

r 
2 )) − (U i 1 , U 

i 
3 , ω 

i 
2 ) ‖ with respect to c S . 

g  

d  

f  

c  

l  

o  

d  

t  

o

quilibrium in the center of the disk ( ) and a circle having the

ame center as the disk ω of stable equilibria ( ). 

In order to illustrate the convergence when the mesh size tends

o zero, we consider the solution on a fine mesh with c S = 0 . 001

nd c = 0 . 05 . On this fine mesh we compute a reference solution

enoted (U 

r 
1 , U 

r 
3 , ω 

r 
2 ) . We compare the solutions computed on six

ifferent levels of mesh (denoted (U 

i 
1 
, U 

i 
3 
, ω 

i 
2 
) ) obtained by taking

 = 0 . 05 and c S ∈ {0.0 02, 0.0 03, 0.0 04, 0.0 05, 0.0 06, 0.0 07} to the

eference solution. The results are displayed in Fig. 5 . More pre-

isely, we observe that the error ‖ ((U 

r 
1 
, U 

r 
3 
, ω 

r 
2 
)) − (U 

i 
1 
, U 

i 
3 
, ω 

i 
2 
) ‖ de-

reases at a sub-linear order with respect to the characteristic size

 S . Since the numerical procedure combines numerical solving of

artial differential equations and the resolution of a linear system

ith coefficients depending on integral and boundary integral of

olutions of the partial differential equations, is difficult to obtain

heoretical results concerning the order of the error. 

ravity colinear to the vector e 3 . We set θ = π/ 2 , which corre-

ponds to a gravity filed with an opposite orientation with respect

o the vector e 3 . We consider a fluid of density ρ f = 10 3 kg · m 

−3 

nd solid balls of slightly higher density ρ1 
s = 1 . 05 × 10 3 kg · m 

−3 

nd ρ2 
s = 1 . 1 × 10 3 kg · m 

−3 respectively. Taking into account the

ymmetry of the disk and the orientation of g , it is enough to take

(h, k ) = (r cos β, r sin (β)) with r ∈ [0 , L − αR ) and β ∈ (−π
2 , 

π
2 ) .

e consider one hundred different positions of the ball of this

orm and we proceed as in the case where the gravity field was

erpendicular to the plane O e e treated in the previous para-
1 3 
raph. In Fig. 6 (left) we display the field G obtained for balls of

ensity ρ1 
s and in Fig. 6 (right) the corresponding results obtained

or ρ2 
s . We remark that the number of the equilibrium points

hanges with respect to ball’s density. For ρ1 
s there are three equi-

ibrium positions all situated on the z -axis: one stable node ( ),

ne unstable node ( ), and a saddle point ( ). If the ball B has

ensity ρ2 
s there is only one stable equilibrium situated at the bot-

om of the z -axis. This behaviour is exactly the same as the one

bserved in a two-dimensional framework in [7] . 
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Fig. 6. Vector field G in the case of cylinder with circular section and a gravity field corresponding to θ = 

π
2 

, a fluid of density ρ f = 10 3 kg · m 

−3 and a ball of density 

ρ1 
s = 1 . 05 × 10 3 kg · m 

−3 (left) and ρ2 
s = 1 . 1 × 10 3 kg · m 

−3 (right). 

Fig. 7. Vector field G in a case of a cylinder with rectangular section. 
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6.2.2. Cylinder with rectangular cross-section 

We consider here the flow around balls B of radius R = 0 . 05 im-

mersed in a fluid flowing inside a rectangular prism, or in other

words, inside a cylinder of rectangular cross-section ω. The grav-

ity field is oriented along the direction e 2 , i.e. θ = 0 . We take

the cross-section of the rectangular prism to be the rectangle ω =
(−L , L ) × (−�, � ) with L = 0 . 5 and � = 0 . 2 . Taking into account the

symmetry of the rectangle, it is enough to compute the solutions

of system (25) for positions of the ball in the upper-right quarter of
, i.e., we consider ( h, k ) ∈ {( i δ1 , j δ2 ) for 0 ≤ i, j ≤ n }, δ1 = (L − αR ) /n

nd δ2 = (� − αR ) /n . Here, we have taken α = 1 . 25 . In Fig. 7 we

epresent the results obtained for this configuration. On the left-

and side we represent the field G in ω obtained by symmetry

rom the field computed in a quarter of the domain (the gray rect-

ngle) and the positions of the ball B which correspond to steady

olutions. The same situation is represented in a three-dimensional

iew in the right-hand side of Fig. 7 . To obtain some more informa-

ion about the nature of these equilibrium positions we represent
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Fig. 8. Several zooms of the vector field G in the case of a cylinder with rectangular section. 
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n Fig. 8 four different zooms around the points where the field

is close to zero. It seems that there are nine such equilibrium

ositions: 

• one unstable node ( ) 

• four saddle points near the middles of the edges ( ) 

• four stable nodes around the diagonals and near the corners of

the rectangle ( ). 

These results are in agreement with the results obtained

n [2,3] . We mention that our method is not able to reproduce the

ehaviour observed in some other recent papers in microfluidics,

here only two stable equilibria, situated near the middle of the

onger edges of the rectangle are observed experimentally [12,17] .
his is probably due to the fact that we approach the Navier–

tokes initial model by a first order development with respect to

he Reynolds number and therefore our approach may be applied

nly for small enough Reynolds numbers. 

.2.3. Cylinder with triangular cross-section 

In a recent article by Kim et al. [13] it was presented an ap-

lication of the inertial migration for the separation of particles in

uspension in a micro-fluid. The authors proposed an experimen-

al setup consisting of several micro-channels of rectangular and

riangular shapes in order to separate particles of different sizes

eing in suspension in a fluid. 

In this last part, we consider the case of triangular shaped

ubes. Let ω be an equilateral triangle of edge L = 1 . Using the

ymmetry of this domain, it is enough to consider the sixth part of
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Fig. 9. Field G and positions of the ball B for which steady solutions are obtained in the case where ω is an equilateral triangle. 

Fig. 10. Position of the ball for which steady solutions are obtained: filled shapes 

are obtained for a ball of radius R = 0 . 05 and empty shapes for R = 0 . 1 . 
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this domain (triangle in gray in Fig. 9 ) for the positions of the ball.

Nevertheless, we need to solve a number of 210 different geomet-

ric configurations in order to obtain the graphical representation in

this figure. 

There seem to be a number of seven positions for the ball B

such that the corresponding field G is zero. Among these positions,

there is one unstable node near the mass center of the triangle

( ), three saddle-points near the middle of each edge ( ) and

three stable nodes near the angles ( ). The results are in agree-

ment with the results in [13] concerning the number of equilib-

rium points. As in the case of rectangles, due to the fact that our

method is based on the approximation of the non-linear Navier–

Stokes problem by linearizing at the first order with respect to

the Reynolds number, we are probable not sufficiently close to the

physical situations in a micro-channel to be able to seize the be-

havior described in [13] . 

In fact, for the applications to particle separations it is impor-

tant that for balls of different sizes have different positions ( h, k )

providing steady solutions. In Fig. 10 we represent the positions for
hich we obtain steady solutions for balls of radius R = 0 . 05 ( ,

, ) and for balls of radius R = 0 . 1 (the corresponding unfilled

hapes). We therefore observe that bigger particles have focusing

ositions situated closer to the center of the channel than smaller

articles. 

. Conclusion 

The main contribution of this work is the generalization of the

ethod proposed in [8] to the three-dimensional case. More pre-

isely, we reduce the computation of the inertial velocity of a solid

article immersed in a fluid flowing in a three-dimensional pipe

o a problem having the same structure as the one in [8] . A finely

uned computational strategy was implemented in order to tackle

he practical difficulties related to the geometry of the problem

nd to the high computational costs. The finite elements method

as employed to approach the fluid-structure system on a mesh

hich, using the symmetry of the problem, discretizes only half of

he pipe, and which is much finer on the spherical particle than on

he pipe’s walls. The proposed method was validated on the well

nown situation of inertial migration of spherical particles in a

ylinder with circular section and illustrated on other less symmet-

ic geometries as cylinder with triangular and rectangular cross-

ections. For all the considered geometries we discuss the number

nd the nature of the equilibrium positions, this information be-

ng important for applications as separation of micro-particles of

ifferent sizes. 

Several developments and generalizations of this method are

ossible. From a theoretic point of view, it will be interesting to

pproach the initial nonlinear fluid-structure by a development

ith respect to the Reynolds number at an order higher than one.

n this way, the non-linearity of the system could treated in a more

recise manner. Another possible extension is to consider more

omplex geometries: what happens if the cylinder is torsioned, if

he particle is not spherical or if there are more than one particle?
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