
A BI-PROJECTION METHOD FOR INCOMPRESSIBLE BINGHAM FLOWS

WITH VARIABLE DENSITY, VISCOSITY AND YIELD STRESS
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Abstract. A new numerical scheme for solving incompressible Bingham flows with variable
density, plastic viscosity and yield stress is proposed. The mathematical and computational
difficulties due to the non-differentiable definition of the stress tensor in the plug regions, i.e.
where the strain-rate tensor vanishes, is overcome by using a projection formulation as in the
Uzawa-like method for viscoplastic flows. This projection definition of the plastic tensor is
coupled with a fractional time-stepping scheme designed for Newtonian incompressible flows
with variable density. The plastic tensor is treated implicitly in the first sub-step of the fractional
time-stepping scheme and a fixed-point iterative procedure is used for its computation. A
pseudo-time relaxation term is added into the Bingham projection whose effect is to ensure a
geometric convergence of the fixed-point algorithm. This is a key feature of the bi-projection
scheme which provides a fast and accurate computation of the plastic tensor. Stability and
error analyses of the bi-projection scheme are provided. The use of the discrete divergence-free
velocity to convect the density in the mass conservation equation allows us to derive lower and
upper bounds for the discrete density. The error induced by the pseudo-time relaxation term is
controlled by a prescribed numerical parameter so that a first-order estimate of the time error
is derived for the velocity field and the density, as well as the dependent parameters that are
the plastic viscosity and the yield stress.

1. Introduction

Viscoplastic materials are common in many industrial processes, as in food industry with dairy
products, chocolate confection, pulp suspensions, in the petroleum industry with drilling mud,
cement, waxy crude oil, and in various geophysical phenomena such flows of slurries, debris and
lava. In many cases, mixtures of fluids with different properties occur as sliding of mud in water,
dam break of granular matter in air or water. In food industry, the cleaning of a viscoplastic
material from conduits is achieved through the displacement induced by water steam or air. Also
in the process of oil recovery, a flow of gas, steam or even water is used to push and transport
heavy and highly viscous fluids.
Viscoplastic fluids flow only if the stress exceeds a threshold, namely the yield stress, otherwise
they do not deform and behave like solids. Typical viscoplastic fluid flows exhibit both yielded
and unyielded regions. The rigid structures, where the deformation rates vanish, may either be
plugs moving as solid bodies or frozen zones, i.e. where the flow is at rest (no velocity). The
most commonly used yield stress model to account for this peculiar behaviour is the Bingham
model. In the constitutive law, the stress tensor is not prescribed until the yield stress is reached
while, above the threshold, it is proportional to the strain-rate tensor. This singular change of
rheological properties induces mathematical difficulties. From a computational point of view,
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reproducing accurately the yield surfaces separating yielded and unyielded regions is challenging
(see [28] for a recent review on numerical simulation of viscoplastic flows). Two approaches have
been mainly used both in the fields of theoretical studies and numerical simulations, namely
regularization methods (see for instance [4] and [25]) and optimization techniques relying on the
theory of variational inequalities (see [9] and [14]). Note that theoretical analyses concerning
the questions of existence, uniqueness and regularity of solutions have been investigated in [9]
and more recently in [12, 13]. Due to their simplicity regularization methods are appealing : the
singular Bingham law is replaced by a regularized form making the flow viscous everywhere with
a large but finite viscosity in the unyielded regions. The main drawback of this approach is the
difficulty to accurately locate the yield surfaces which are not accounted for by the regularized
model. A review for this approach can be found in [11].
The second approach used to overcome the difficulty due to the non-differentiability of the
definition of the stress tensor is based on the variational formulation of the Navier-Stokes equa-
tions which leads to a saddle-point problem. This optimization problem can be solved by
using the Uzawa-like method or the augmented Lagrangian method (see [8] and the references
therein). Both algorithms allow for accurate but rather expansive numerical simulations when
a fine description of the plug regions and the yield surfaces is required (see [24, 23]). Efforts
have been recently done to accelerate the convergence of the Augmented Lagrangian algorithm
(see [31, 27]). In [27], a modified Newton method achieving superlinear convergence is proposed.
The Uzawa-like method (see [8, 24]) relies on a (pointwise) projection operator for the computa-
tion of the extra (plastic part) stress tensor. In [8], the authors suggested to add a pseudo-time
relaxation term in the Bingham projection operator in order to increase the convergence rate
of the fixed-point algorithm used to compute the plastic tensor. In [7], this approach was cou-
pled with a projection scheme [6, 30] for the time discretization of the Navier-Stokes equations.
The resulting bi-projection scheme was analyzed in terms of stability study and error estimates.
More precisely, it was shown in [7] that the pseudo-relaxation term in the Bingham projection
does not deteriorate the first-order accuracy of the time discretization scheme. Indeed, the error
is of the order

√

δt(1 + θ) which is of first order if the prescribed relaxation parameter θ is of
the order of the time step δt. Through various numerical simulations in standard configurations,
the bi-projection scheme was shown in [7] to be able to reproduce the characteristic property of
Bingham flows to return to rest in finite time, to accurately predict the plug regions, and to be
efficient at both large Bingham and high Reynolds numbers.
The main contribution of the present paper is to extend the numerical scheme proposed in [7]
to incompressible Bingham flows with variable (in space and time) density, plastic viscosity and
yield stress. The key feature of the projection method for the time discretization of the Navier-
Stokes equations is to decouple the computations of the velocity field and the pressure. In a
first step, a predicted velocity which is not divergence free is computed from which the gradient
of a scalar function (a pseudo-pressure) is then subtracted resulting in a solenoidal velocity
field. The Helmholtz decomposition is invoked in the second step so that the (pseudo-)pressure
is solution of a Poisson equation. While introduced in the pioneering works of Chorin [6] and
Temam [30] at the end of the 60’s in the case of homogeneous fluid flows, i.e. with constant
density and viscosity, projection methods have first been analyzed in terms of error estimates
by Shen in [29] in the early 90’s. Let us also mention [16] for an analysis of a finite element fully
discrete version. Fractional step schemes in the spirit of projection methods have been later on
extended to incompressible Navier-Stokes equations with variable density and used in numerical
simulations, see for example [3, 1]. Concerning the mathematical analysis of projection schemes
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for variable-density flows, stability results have been proved in [17, 26] and error estimates have
been derived in [19] for a fully discrete version based on the finite element method for the
spatial discretization. For density-variable flows, if the projection step is achieved as in the
homogeneous case, i.e. by using the Helmholtz decomposition, a variable coefficient elliptic
equation has to be solved at each time step (see [18] for instance) in order to compute the
pressure, inducing both mathematical and computational difficulties. In [18, 19] an alternative
approach based on the interpretation of projection methods as penalty methods is used. As a
result, the fractional time-stepping methods proposed in [18, 19] necessitate the resolution of
only one Poisson equation per time step and are therefore more efficient from a computational
point of view.
The aim of this paper is to make use of these recent developments to propose a new time
discretization scheme for solving the equations describing the motion of Bingham fluids with
variable density, plastic viscosity and yield stress. Unlike in [18, 19], we consider the temporal
semi-discrete equations. Also, as a main difference, the divergence-free velocity field is used as
convective velocity in the discrete version of the mass conservation equation allowing to derive
lower and upper bounds as well as error estimates on the density. Concerning the treatment
of the plastic tensor, a fixed-point algorithm is invoked to solve the Bingham projection, in
the spirit of [24]. As in [7], a pseudo-time relaxation term is added in the computation of the
plastic tensor through the Bingham projection in order to provide a geometric convergence of
this algorithm. The objective of this paper is to perform stability study and error analyses of
the proposed bi-projection scheme. To the best of our knowledge, no stability and convergence
analysis of projection schemes for incompressible variable density Bingham flows have been done
yet. As in the case of homogeneous Bingham flows, the bi-projection scheme is proved to be
stable and first order accurate as long as the relaxation parameter is taken of the order of the
time step.
The paper is organized as follows. In Section 2, the mathematical formulation for a Bingham
model with variable coefficients is introduced. A projection formulation for the plastic part of
the stress tensor which will be suitable for the construction of our scheme is provided. In Section
3, some additional notations are introduced and preliminary results, that will be useful in the
following sections, are given. In Section 4, the bi-projection scheme, as a time approximation of
the continuous model, is shown to be well-posed and bounds on the density, and the dependent
coefficients, that are the viscosity and yield stress, are obtained. Sections 5 and 6 are respectively
devoted to the stability and error (convergence) analyses of the scheme.

2. The model of a Bingham viscoplastic flow with variable density

2.1. The mathematical model. Let T > 0 be a positive real number and Ω a bounded domain
of R3; we denote by Γ the boundary of Ω. The isothermal flow of an incompressible viscoplastic
medium with variable density is modeled by the following equations, satisfied by the velocity u,
the density ρ and the pressure p,

(1)

⎧

⎪
⎨

⎪
⎩

∂tρ+ u ·∇ρ = 0,

ρ
(

∂tu+ u ·∇u
)

+∇p = div τ ,

divu = 0,

in (0, T )× Ω. The deviatoric stress tensor τ is defined by the relation

(2) τ = 2µ(ρ)Du+ α(ρ)Σ,
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with Du = 1
2

(

∇u+ T∇u
)

the strain-rate tensor and Σ is the extra (plastic) part of the stress
tensor. The plastic viscosity µ and the yield stress α are functions of the density ρ of class C1

and are assumed to be respectively positive and non-negative. We denote by

Q0 = {(t,x) ∈ (0, T ) × Ω; Du(t,x) = 0}
the sub-domain of (0, T )×Ω where the strain-rate tensor vanishes. The plastic tensor Σ ∈ R3×3

is defined by (see [9] for instance)

(3)

⎧

⎨

⎩

Σ(t,x) =
Du(t,x)

|Du(t,x)|
for (t,x) ∈

(

(0, T )× Ω
)

\ Q0,

|Σ(t,x)| ≤ 1, TΣ(t,x) = Σ(t,x), trΣ(t,x) = 0 for (t,x) ∈ Q0,

where, for all λ ∈ R3×3, we denote by

(4) |λ|2 =
1

2
tr
(
Tλλ

)

its second invariant (see [2]). The system (1)-(2)-(3) is supplemented with the following initial
and boundary conditions

(5) ρ|t=0 = ρ0, u|t=0 = u0, u|Γ = 0.

Finally, we assume there exists ρ1, ρ2 > 0,

(6) ρ1 ≤ ρ0 ≤ ρ2, a.e. in Ω, and u0 ∈ H1
0(Ω) with divu0 = 0.

If the velocity field u solution of (1) is sufficiently regular (see [5]), as ρ is solution of a transport
equation, u is divergence free and the initial density satisfies (6), we have

(7) ρ1 ≤ ρ(t,x) ≤ ρ2 a.e. in (0, T )× Ω.

This ensures that, almost everywhere in (0, T ) ×Ω, we have

(8)
∃µ1, µ2 > 0, µ1 ≤ µ(ρ(t,x)) ≤ µ2,

∃α1,α2 ≥ 0, α1 ≤ α(ρ(t,x)) ≤ α2.

In the Newtonian case, such regularity results can be obtained if the data are small enough
(see for instance [21] and the references therein). For yield stress fluids, we assume that similar
regularity results can be obtained. In the rest of the paper, we assume that solutions of (1)
satisfying (7) exists so that (8) is satisfied.

2.2. A projection formulation. We now introduce a projection formulation for the plastic
tensor Σ, which is more suited for the construction of our numerical scheme.

Proposition 1. For all ℓ > 0, the condition (3) is equivalent to the relation

(9) Σ(t,x) = P
(

Σ(t,x) + ℓDu(t,x)
)

,

where P is the projection operator on the closed convex set defined by

Λ = {λ ∈ R
3×3; |λ| ≤ 1, Tλ = λ, trλ = 0}.

Proof. If Du(t,x) = 0, the equivalence is obvious as we have in both cases Σ(t,x) ∈ Λ.
We now assume that Du(t,x) ≠ 0. An explicit expression of the projection is given by

(10) P(λ) =

{

λ if |λ| ≤ 1,
λ

|λ| if |λ| > 1.
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Let ℓ > 0 be a positive real number. If (3) is satisfied, we have Σ(t,x) =
Du(t,x)

|Du(t,x)|
. Therefore,

∣
∣
∣Σ(t,x) + ℓDu(t,x)

∣
∣
∣ = 1 + ℓ

∣
∣Du(t,x)

∣
∣ > 1,

so that, according to (10), we have

P
(

Σ(t,x) + ℓDu(t,x)
)

=
Σ(t,x) + ℓDu(t,x)

|Σ(t,x) + ℓDu(t,x)|
=

Du(t,x)

|Du(t,x)|
= Σ(t,x),

hence, (9) follows.
Let us now assume that (9) is fulfilled. We have |Σ(t,x) + ℓDu(t,x)| > 1 (otherwise, ℓ = 0 due
to (10)). Therefore, according to (10) we have

Σ(t,x) =
Σ(t,x) + ℓDu(t,x)

|Σ(t,x) + ℓDu(t,x)|
,

so that |Σ(t,x)| = 1. We also deduce that

Σ(t,x)
(

|Σ(t,x) + ℓDu(t,x)|− 1
)

= ℓDu(t,x),

so that |Du(t,x)| =
|Σ(t,x) + ℓDu(t,x)|− 1

ℓ
. Then Σ(t,x) =

Du(t,x)

|Du(t,x)|
which concludes the

proof. !

Remark 1. When Du is only Lebesgue-integrable in space, we define Σ̃ as above with a repre-
sentative of Du. Then, we define Σ as the class of Σ̃. Introducing

Λ = {f ∈ L2(Ω)3×3; |f | ≤ 1, Tf = f , trf = 0, a.e. in Ω},
we have Σ(t) ∈ Λ.

With the help of Proposition 1, we can rewrite the mathematical model for incompressible
visco-plastic flows with variable density, viscosity and yield stress as, for any ℓ > 0,

(11)

⎧

⎪
⎨

⎪
⎩

∂tρ+ u ·∇ρ = 0,

ρ
(

∂tu+ u ·∇u
)

+∇p− 2 div
(

µ(ρ)Du
)

= div
(

α(ρ)Σ
)

,

Σ = P(Σ+ ℓDu), divu = 0,

which is supplemented with the initial and boundary conditions (5). Note that for constant
density flows, the system (11) reduces to the mathematical model studied in [7].

3. Preliminaries

We now introduce some of the notations used in the sequel. For two vectors u and v in R3, we
denote by u · v their inner product, u · v =

∑

1≤i≤3 uivi, and by | · | the associated norm. For

two tensors A and B in R3×3, we denote by A : B their inner product, namely

A : B =
∑

1≤i,j≤3

AijBij.

Let us note that the tensorial norm | · | defined by (4) is not induced by the above inner product.
We will make use of the standard notations Lp(Ω), Hk(Ω) and Hk

0 (Ω) to denote the usual
Lebesque and Sobolev spaces over Ω. We denote by L2

0(Ω) the subspace of L2(Ω) of functions
with vanishing mean value. The norm corresponding to Hk(Ω) will be denoted by ∥ · ∥k. In
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particular, we will use ∥ · ∥ to denote the norm in L2(Ω) and (·, ·) to denote the scalar product
in L2(Ω). For each space above, we will use bold letters to denote their vectorial counterpart:

for example, L2(Ω)
3
will be denoted L2(Ω). Also other functional spaces may be considered in

the sequel. In such cases, they are always indicated as subscripts: for instance ∥ ·∥L∞(Ω) denotes
the norm associated to the space L∞(Ω).
The incompressibility constraint leads us to consider the following space

H = {u ∈ L2(Ω); divu = 0, u · n|Γ = 0},

where n is the unit outward normal to Γ. For any sequence (an)n∈N, we introduce

δan = an − an−1 and δ2an = δ(δan) = an − 2an−1 + an−2.

The following lemma of Gronwall type will be used to derive the error estimates in Section 6.
Note that a proof can be found in [20].

Lemma 1. (Discrete Gronwall lemma). Let M ∈ N∗, τ , B and C be non-negative parameters,
(yn)n, (hn)n, (gn)n and (fn)n be non-negative sequences satisfying, for all m such that 0 ≤ m ≤
M ,

ym + τ
m
∑

n=0

hn ≤ B + τ
m
∑

n=0

(gnyn + fn), with τ
M
∑

n=0

gn ≤ C.

Assume τgn < 1 for all n such that 0 ≤ n ≤ M and let

σn = (1− τgn)−1, σ = max
0≤n≤M

σn,

then, for all m such that 0 ≤ m ≤ M , we have

ym + τ
m
∑

n=0

hn ≤ exp(σC)
(

B + τ
m
∑

n=0

fn
)

.

Finally, we define the bilinear form B̃ by

B̃(u,v) = (u ·∇)v +
v

2
divu,

and the associated trilinear form: b̃(u,v,w) = (B̃(u,v),w). It can be easily shown that

(12) b̃(u,v,v) = 0, ∀u ∈ H1(Ω) with u · n|Γ = 0, ∀v ∈ H1(Ω) .

Another orthogonality property will be also useful in the sequel, namely we have

(13)

∫

Ω
ϕu ·∇ϕ dx = 0, ∀u ∈ L3(Ω) ∩H, ∀ϕ ∈ H1(Ω).

4. The bi-projection scheme

4.1. The temporal discretization. In this section, we propose a scheme to discretize with
respect to the time variable the model (11). Let us introduce some additional notations. Let
N > 0 be an integer and (tn)n∈{0,...,N} a sequence of discrete time levels in [0, T ]. For the sake
of simplicity, we consider a uniform discretization, that is

tn = nδt with δt =
T

N
.

We introduce two additional numerical parameters r > 0 and θ > 0.
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We start with ρ0, u0, û0, q0, p0 and Σ0 (initialization step). We choose ρ0 = ρ0, u0 = û0 = u0,
q0 = 0, and arbitrary Σ0 and p0.
For n ≥ 0, assuming that ρn, un, ûn, qn, pn and Σn are known, we first compute ρn+1 by solving

(14)
ρn+1 − ρn

δt
+ ûn ·∇ρn+1 = 0,

and, with the help of (8), we define µn+1 and αn+1 by the following relations

(15) µn+1 = µ(ρn+1), αn+1 = α(ρn+1).

Next, un+1 and Σn+1 are solutions of the system

(16)

⎧

⎪
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎪
⎩

1

δt

[1

2
(ρn+1 + ρn)un+1 − ρnun

]

+ B̃(ρn+1ûn,un+1)

− div(2µn+1Dun+1) +∇(pn + qn) = div(αn+1Σn+1),

Σn+1 = P
(

Σn+1 + rαn+1Dun+1 + θ(Σn −Σn+1)
)

,

un+1|Γ = 0.

Finally, we compute qn+1 by solving the Poisson equation

(17)

{

∆qn+1 =
ρ1
δt

div(un+1),

∂nqn+1|Γ = 0,

and we write

pn+1 = pn + qn+1,(18)

ûn+1 = un+1 −
δt

ρ1
∇qn+1.(19)

Remark 2. Using (17), (18) and (19), we observe that, for all 0 ≤ n ≤ N, ûn satisfies

ûn · n|Γ = 0 and div ûn = 0.

Note that a fractional time-stepping method in the spirit of [18], [19] is employed to decouple
the velocity and the pressure. A major difference between [18], [19] and the above algorithm
(14)–(19) resides in the treatment of the mass conservation equation, namely the divergence-
free velocity ûn is used as the convective velocity in the equation of the density (14). With this
approach, lower and upper bounds on the density (ρn)n≥0 can be derived. More precisely, we
will prove that, for all 0 ≤ n ≤ N ,

ρ1 ≤ ρn ≤ ρ2.

In order to resolve the coupling in (16) between the velocity un+1 and the plastic tensor Σn+1, we
advocate a fixed-point algorithm, in the spirit of [24], which is detailed in Section 4.3. As in [7],
a pseudo-time relaxation term θ(Σn −Σn+1) is added in the projection operator defining Σn+1

in (16). This additional term guarantees a geometric convergence of this algorithm.
System (17) is a classical Poisson equation. As an immediate consequence, we have qn+1 ∈ H2(Ω)
and so ûn+1 ∈ H1(Ω) exist and are uniquely defined. Finally, let us mention that the coefficient
rαn+1 is used, instead of r only, in the Bingham projection defining Σn+1. We will see in
Section 4.3 that the use of rαn+1 is required to derive proper estimates and convergence of the
fixed-point algorithm.
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4.2. Discrete maximum principle on the density. The use of the divergence free velocity
in the mass conservation equation (14) allows us to derive positive upper and lower bounds on
the density. This property will be repeatedly used in the rest of the paper. Let us first establish
this result.
Let ϵ > 0 be a parameter. In order to properly define solutions of (14), we introduce the
following regularized form

(20)

⎧

⎨

⎩

ρn+1
ϵ − ρn

δt
+ ûn ·∇ρn+1

ϵ − ϵ∆ρn+1
ϵ = 0,

∇ρn+1
ϵ · n|Γ = 0.

The limit of ρn+1
ϵ when ϵ tends to 0 is called the viscosity solution of (14) (see [10] and [15]).

In the remaining part of the paper, ρn+1 will always be used to denote the viscosity solution of
(14).

Proposition 2. If ûn ∈ H∩L3(Ω) and ρ1 ≤ ρn ≤ ρ2 almost everywhere in Ω, then there exists
a unique viscosity solution satisfying (14) in the distribution sense. Moreover, this solution
satisfies

ρ1 ≤ ρn+1 ≤ ρ2, a.e. in Ω.

Proof. Step 1: Regularized equation. Equation (20) leads us to consider the variational problem

(21)

Find ρn+1
ϵ ∈ H1(Ω) so that, for all ϕ ∈ H1(Ω), we have

∫

Ω
ρn+1
ϵ ϕ− δt

∫

Ω
ρn+1
ϵ ûn ·∇ϕ+ δtϵ

∫

Ω
∇ρn+1

ϵ ·∇ϕ =

∫

Ω
ρnϕ.

By virtue of the Lax-Milgram theorem (using ûn ∈ H ∩ L3(Ω) and the property (13)), there
exists a unique ρn+1

ϵ ∈ H1(Ω) solution of (21), which satisfies (20) almost everywhere in Ω and Γ.

Step 2: Bound of the regularized solution. We want to prove that ρ1 ≤ ρn+1
ϵ ≤ ρ2 almost

everywhere in Ω. By choosing ϕ = (ρn+1
ϵ − ρ2)+ in (21), where the + superscript denotes the

positive part (similarly a − superscript denotes the negative part), using again (13), and defining
the sign function by sign(x) = 1 if x ≥ 0 and sign(x) = −1 otherwise, we obtain

∫

Ω
(ρn+1

ϵ − ρ2)(ρ
n+1
ϵ − ρ2)

+ +
δtϵ

2

∫

Ω
|∇ρn+1

ϵ |2
(

1+ sign(ρn+1
ϵ − ρ2)

)

=

∫

Ω
(ρn − ρ2)(ρ

n+1
ϵ − ρ2)

+.

Observing that the right-hand side is negative and the second term of the left-hand side is
non-negative, we have

∫

Ω
(ρn+1

ϵ − ρ2)(ρ
n+1
ϵ − ρ2)

+ ≤ 0.

On the other hand, xx+ is non-negative for any x ∈ R. As a consequence,

(ρn+1
ϵ − ρ2)(ρ

n+1
ϵ − ρ2)

+ = 0 a.e. in Ω,

and then

ρn+1
ϵ ≤ ρ2 a.e. in Ω.
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By choosing (ρn+1
ϵ −ρ1)− in (21), we similarly obtain ρn+1

ϵ ≥ ρ1 a.e. in Ω. Finally, ρn+1
ϵ ∈ L∞(Ω)

and

(22) ρ1 ≤ ρn+1
ε ≤ ρ2, a.e. in Ω.

Step 3: Passage to the limit on ϵ and viscosity solution. By choosing ϕ = ρn+1
ϵ in (21), we have

∫

Ω
|ρn+1

ϵ |2 + δtϵ

∫

Ω
|∇ρn+1

ϵ |2 =
∫

Ω
ρnρn+1

ϵ .

By invoking the Cauchy-Schwarz inequality, it follows

∥ρn+1
ϵ ∥2 + δt∥

√
ϵ∇ρn+1

ϵ ∥2 ≤ ∥ρn∥∥ρn+1
ϵ ∥.

Then, with the help of Young’s inequality, we obtain

∥ρn+1
ϵ ∥2 + 2δt∥

√
ϵ∇ρn+1

ϵ ∥2 ≤ ∥ρn∥2.
By using this last inequality and (22), we deduce that (ρn+1

ϵ )ϵ, and (
√
ϵ∇ρn+1

ϵ )ϵ, are bounded
sequences in respectively L∞(Ω) and L2(Ω). Hence, there exists weakly convergent subsequences

(23) ρn+1
ϵ

∗
⇀
ϵ→0

ρn+1 in L∞(Ω),
√
ϵ∇ρn+1

ϵ ⇀
ϵ→0

ψ in L2(Ω) .

As a consequence of the weak convergence and by using (22),

ρ1 ≤ ρn+1 ≤ ρ2, a.e. in Ω.

Finally, for all ϕ ∈ D(Ω), we have
∫

Ω
ρn+1
ϵ ϕ −→

ϵ→0

∫

Ω
ρn+1ϕ,

−δt
∫

Ω
ρn+1
ϵ ûn ·∇ϕ −→

ϵ→0
−δt

∫

Ω
ρn+1ûn ·∇ϕ,

δtϵ

∫

Ω
∇ρn+1

ϵ ·∇ϕ −→
ϵ→0

0,

so that ∫

Ω
ρn+1ϕ− δt

∫

Ω
ρn+1ûn ·∇ϕ =

∫

Ω
ρnϕ.

We conclude that ρn+1 satisfies the transport equation (14) in the distributions sense. !

We are now able to establish the following result:

Theorem 1. If u0 and ρ0 satisfy (6), the sequences (ûn, ρn)0≤n≤N solutions of (14)-(19) satisfy,
for all n such that 0 ≤ n ≤ N ,

ûn ∈ H ∩H
1(Ω),

and
ρ1 ≤ ρn ≤ ρ2, a.e. in Ω.

Proof. We proceed by induction.
Case n = 0. From (6), using ρ0 = ρ0 and û0 = u0, we infer

ρ1 ≤ ρ0 ≤ ρ2, a.e. in Ω, and û0 ∈ H ∩H1(Ω) .

Case n ≥ 1. We assume

ρ1 ≤ ρn ≤ ρ2, a.e. in Ω, and ûn ∈ H ∩H1(Ω) .
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From Proposition 2, we have ρ1 ≤ ρn+1 ≤ ρ2 almost everywhere. The existence and uniqueness
for the solution (un+1,Σn+1) ∈ H1

0(Ω)×Λ to the system (16) is a consequence of the theory of
variational inequalities. The precise result for this system can be found in [8] (page 47). Then,
by solving (17), we obtain the existence and uniqueness of qn+1 ∈ H2(Ω). As a consequence,
ûn+1 given by (19) lies in H ∩H1(Ω), which concludes the proof. !

Remark 3. Using (8) and the above result, we observe that, for all 0 ≤ n ≤ N ,

µ1 ≤ µn ≤ µ2, α1 ≤ αn ≤ α2, a.e. in Ω.

4.3. Practical implementation of the Bingham projection. The equations (16) involve a
coupling between un+1 and Σn+1. In order to solve this system in practice and following [7], we
employ a fixed-point iteration procedure and proceed as it follows. Let us start with Σn,0 = Σn.
For k ≥ 0 we assume that Σn,k ∈ Λ is known and we compute un,k ∈ H1

0(Ω) by solving the
following elliptic problem

(24)

⎧

⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎩

1

δt

[1

2
(ρn+1 + ρn)un,k − ρnun

]

+ B̃(ρn+1ûn,un,k)

− div(2µn+1Dun,k) +∇(pn + qn) = div(αn+1Σn,k),

un,k|Γ = 0.

Next, a projection is used to explicitly deduce the extra-stress tensor Σn,k+1 ∈ Λ, namely

(25) Σn,k+1 = P
(

Σn,k + rαn+1Dun,k + θ(Σn −Σn,k)
)

.

The following result establishes that the sequence (un,k,Σn,k)k converges to the desired solution
(un+1,Σn+1) of the equation (16).

Theorem 2. If 4θ + r (α2)2

µ1
≤ 4, then, for all 0 ≤ n ≤ N − 1, the sequence (un,k,Σn,k)k tends

to (un+1,Σn+1) when k tends to infinity. Moreover the convergence is geometric with common
ratio 1− θ.

Proof. We denote uk = un,k − un+1 and Σ
k
= Σn,k −Σn+1. By subtracting (24)-(25) to (16),

we obtain

(26)

⎧

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎩

1

2δt
(ρn+1 + ρn)uk + B̃(ρn+1ûn,uk)− div(2µn+1Duk) = div(αn+1Σ

k
),

uk|Γ = 0,

Σ
k+1

= P
(

Σn,k + rαn+1Dun,k + θ(Σn −Σn,k)
)

− P
(

Σn+1 + rαn+1Dun+1 + θ(Σn −Σn+1)
)

.

We now take the inner product of the first equation in (26) with uk in L2(Ω). Using (12), we
deduce

(27)
1

δt

∥
∥
∥
∥

√

ρn+1 + ρn

2
uk

∥
∥
∥
∥

2

+ 4∥
√

µn+1Duk∥2 = −(αn+1Σ
k
,Duk).

From the second equation of (26), since P is a projection, we derive

|Σk+1| ≤ |(1− θ)Σ
k
+ rαn+1Duk|.
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By taking the L2(Ω)-norm, it follows

(28) ∥Σk+1∥2 ≤ (1− θ)2∥Σk∥2 + r2∥αn+1Duk∥2 + r(1− θ)(αn+1Σ
k
,Duk).

Combining (27), (28) and making use of αn+1 ≤ α2, µn+1 ≥ µ1 and ρn+1+ρn

2 ≥ ρ1, we obtain

∥Σk+1∥2 +
rρ1(1− θ)

δt
∥uk∥2 + r

(

4µ1(1− θ)− rα2
2

)

∥Duk∥2 ≤ (1− θ)2∥Σk∥2.

From the assumption 4θ + r
α2
2

µ1
≤ 4, we deduce

∥Σk∥ ≤ (1− θ)k∥Σ0∥ and ∥uk∥ ≤

√

δt(1 − θ)

rρ1
(1− θ)k∥Σ0∥

which concludes the proof of Theorem 2. !

Note that, if 4θ + r
α2
2

µ1
< 4, we also have convergence in H1(Ω) for the velocity, namely

∥Duk∥ ≤
1− θ

√

r(4µ1(1− θ)− rα2
2)
(1− θ)k∥Σ0∥.

5. Stability analysis

In Theorem 1, we have proved that the density satisfies a discrete maximum principle which
ensures, as it is noted in Remark 3, that the plastic viscosity and the yield stress have lower and
upper bounds. By using this preliminary stability result, we can now establish a stability result
for all sequences computed with the scheme (14)-(19).

Theorem 3. If u0 and ρ0 satisfy (6), if r
α2
2

µ1
≤ 3

2 and θ ≤ 1
2 , then, for all 1 ≤ n ≤ N , we have

∥
√
ρnun∥2 + δt

n−1
∑

k=0

∥
√

2µn+1Duk+1∥2 +
δt2

ρ1
∥∇pn∥2 +

2θ

r
δt∥Σn∥2

≤ ∥
√

ρ0u0∥2 +
δt2

ρ1
∥∇p0∥2 +

2θ

r
δt∥Σ0∥2.

Proof. We take the inner product of the first equation in (16) with 2δtun+1 in L2(Ω). By
observing that

(

2un+1,
1

2
(ρn+1 + ρn)un+1 − ρnun

)

= ∥σn+1un+1∥2 − ∥σnun∥2 + ∥σn(un+1 − un)∥2,

where we denote σn =
√
ρn, and recalling equation (12), we deduce

(29)
∥σn+1un+1∥2 − ∥σnun∥2 + ∥σn(un+1 − un)∥2 + 4δt∥

√

2µn+1Dun+1∥2

= −2δt(∇(pn + qn),un+1)− 2δt(αn+1Σn+1,Dun+1).

Now, we have to control the two terms in the right-hand side of (29) in order to obtain the
expected inequality.

Term −2δt(∇(pn + qn),un+1). Recalling that pn − pn−1 = qn(see (18)), we write

−2δt(∇(2pn − pn−1),un+1) = 2δt(∇(pn+1 − 2pn + pn−1),un+1)− 2δt(∇pn+1,un+1).
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Taking the inner product of the first equation in (17) with 2δt2

ρ1

(

(pn+1 − pn) − (pn − pn−1)
)

in

L2(Ω), we obtain

δt2

ρ1

(

∥∇(pn+1 − pn)∥2−∥∇(pn − pn−1)∥2 + ∥∇(pn+1 − 2pn + pn−1)∥2
)

= 2δt(un+1,∇(pn+1 − 2pn + pn−1)).

Taking the inner product of the first equation in (17) with −2δt2

ρ1
pn+1 in L2(Ω), we obtain

−
δt2

ρ1

(

∥∇pn+1∥2 − ∥∇pn∥2 + ∥∇(pn+1 − pn)∥2
)

= −2δt(un+1,∇pn+1).

Using the last three equalities, we deduce

(30)

−2δt(∇(2pn − pn−1),un+1) =
δt2

ρ1
∥∇(pn+1 − 2pn + pn−1)∥2

+
δt2

ρ1

[

− ∥∇pn+1∥2 + ∥∇pn∥2 − ∥∇(pn − pn−1)∥2
]

.

Using (17), we have

(31)
δt2

ρ1
∥∇(pn+1 − 2pn + pn−1)∥2 ≤ ∥σn(un+1 − un)∥2.

Combining (29), (30) and (31), we finally deduce

(32)

∥σn+1un+1∥2 − ∥σnun∥2 + 4δt∥
√

2µn+1Dun+1∥2

+
δt2

ρ1

[

∥∇pn+1∥2 − ∥∇pn∥2 + ∥∇(pn − pn−1)∥2
]

≤ −2δt(αn+1Σn+1,Dun+1).

Term −2δt(αn+1Σn+1,Dun+1). Using the second equation of (16), we have

|Σn+1| ≤
∣
∣Σn+1 + rαn+1Dun+1 + θ(Σn −Σn+1)

∣
∣.

By taking the square of this inequality, using the identity 2a(a − b) = a2 − b2 + (a − b)2, the
Cauchy-Schwarz and Young’s inequalities and integrating over Ω, we obtain

(33)
− 2δt(αn+1Σn+1,Dun+1) ≤ 2r

α2
2

µ1
δt∥

√

2µn+1Dun+1∥2

+
2θ(2θ − 1)

r
δt∥Σn −Σn+1∥2 −

2θ

r
δt∥Σn+1∥2 +

2θ

r
δt∥Σn∥2.

Combining (32) and (33), we obtain

∥σn+1un+1∥2 − ∥σnun∥2 + 2δt
(

2− r
α2
2

µ1

)

∥
√

2µn+1Dun+1∥2

+
δt2

ρ1

[

∥∇pn+1∥2 − ∥∇pn∥2 + ∥∇(pn − pn−1)∥2
]

+
2θ(1− 2θ)

r
δt∥Σn −Σn+1∥2 +

2θ

r
δt∥Σn+1∥2 −

2θ

r
δt∥Σn∥2 ≤ 0.
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We conclude the proof by using rα2
2

µ1
≤ 3

2 and θ ≤ 1
2 , and summing from 0 up to n − 1 the last

inequality. !

Note that the above estimate does not provide a bound on the pressure independent on δt. We
will derive such a stability result by using the final error estimate (47) in the proof of Theorem 5
(see Remark 5).
Moreover, using the second equation in (16), Σn ∈ Λ. Hence, for all 0 ≤ n ≤ N , we have

∥Σn∥L∞(Ω) ≤ 1.

6. Error analysis

As usual in error estimates, we have to assume that the solutions of (11) have a sufficient
regularity. We assume in this section that the solution (u, ρ, p,Σ) of (11) satisfies

(34)

u ∈ L∞(0, T ;L∞(Ω)), ∇u ∈ L∞(0, T ;L∞(Ω)), ∂tu ∈ L∞(0, T ;L3(Ω)),

∂ttu ∈ L2(0, T ;L6/5(Ω)), ∇ρ ∈ L∞(0, T ;L∞(Ω)),

∂ttρ ∈ L2(0, T ;L2(Ω)), ∂tp ∈ L2(0, T,H1(Ω)), ∂tΣ ∈ L2(0, T ;L2(Ω)).

Under this regularity assumptions on u (see [5]), the solution ρ of the mass conservation equation
(1) satisfies the maximum principle, that is almost everywhere in (0, T )× Ω, we have

ρ1 ≤ ρ ≤ ρ2.

We introduce the following errors

εn = ρ(tn)− ρn, en = u(tn)− un, ên = u(tn)− ûn,

rn = p(tn)− pn, sn = Σ(tn)−Σn.

We denote ∥µ′∥∞ = supx∈R|µ′(x)| and ∥α′∥∞ = supx∈R |α′(x)|. Since µ and α are functions of
class C1, we obtain

∥µ(ρ(tn))− µn∥ ≤ ∥µ′∥∞∥εn∥ and ∥α(ρ(tn))− αn∥ ≤ ∥α′∥∞∥εn∥.

In the rest of the paper, C denotes a constant independent of the time step δt. Since p|t=0 is
not prescribed in the initial conditions, we can not choose p0 = p|t=0. Therefore r0 ≠ 0 so that
we assume

(35) ∥r0∥2 + ∥∇r0∥2 ≤ Cδt2.

We will also assume

(36) δt < 1/6.

Remark 4. Due to (19) and the above definitions, we have en = ên − δt
ρ1
∇qn. Recalling that

div ên = 0 and ên · n|Γ = 0 (see Remark 2), we deduce

∥ên∥2 ≤ ∥ên∥2 +
δt2

ρ21
∥∇qn∥2 = ∥en∥2.
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6.1. Preliminary error estimates for the density. As for the stability analysis, we first
focus on the sequence (ρn){0≤n≤N} governed by equation (14).

Theorem 4. Under the regularity assumptions (34), if u0 and ρ0 satisfy (6), then, for all n
such that 0 ≤ n ≤ N − 1, we have

(37) δt
n
∑

k=0

∥ρ(tk+1)− ρk+1∥2 ≤ Cδt2 + Cδt
n
∑

k=0

∥u(tk+1)− uk+1∥2.

Proof. The L∞(Ω)-regularity of ρn+1 is not sufficient to derive the expected result. For this
reason, the regularized solution ρnϵ ∈ H1(Ω), solution of (20), is considered. We denote εnϵ =
ρ(tn)− ρnϵ . By subtracting the first equation of (1) taken at time tn+1 from (20), we obtain

(38)

εn+1
ϵ − εn

δt
=
ρ(tn+1)− ρ(tn)

δt
− ∂tρ(tn+1)− ûn ·∇εn+1

ϵ

− ên ·∇ρ(tn+1)− δu(tn+1) ·∇ρ(tn+1)− ϵ∆ρn+1
ϵ ,

where by invoking Taylor’s formulae, we have

ρ(tn+1)− ρ(tn)

δt
− ∂tρ(tn+1) =

1

δt

∫ tn+1

tn

(tn − t)∂ttρ(t)dt.

Now, by taking the L2(Ω)-inner product of the error equation (38) with 2δtεn+1
ϵ and using the

above equality, we obtain

∥εn+1
ϵ ∥2 − ∥εn∥2 + ∥εn+1

ϵ − εn∥2 = 2

(∫ tn+1

tn

(tn − t)∂ttρ(t)dt, ε
n+1
ϵ

)

− 2δt

∫

Ω
εn+1
ϵ

(

ên ·∇ρ(tn+1) + δu(tn+1) ·∇ρ(tn+1)
)

+ 2δtϵ(∇ρn+1
ϵ ,∇εn+1

ϵ ).

By writing

2δtϵ(∇ρn+1
ϵ ,∇εn+1

ϵ ) = 2δtϵ(∇ρn+1
ϵ ,∇ρ(tn+1))− 2δt∥

√
ϵ∇ρn+1

ϵ ∥2,

we obtain

(39)

∥εn+1
ϵ ∥2 − ∥εn∥2 + ∥εn+1

ϵ − εn∥2 + 2δt∥
√
ϵ∇ρn+1

ϵ ∥2

= 2

(∫ tn+1

tn

(tn − t)∂ttρ(t)dt, ε
n+1
ϵ

)

− 2δt

∫

Ω
ên ·∇ρ(tn+1)ε

n+1
ϵ

− 2δt

∫

Ω
δu(tn+1) ·∇ρ(tn+1)ε

n+1
ϵ + 2δtϵ(∇ρn+1

ϵ ,∇ρ(tn+1)).

Making ϵ tends to 0 in (39), using (23) and the inequality ∥εn+1∥ ≤ lim infϵ ∥εn+1
ϵ ∥, we derive

(40)
∥εn+1∥2 − ∥εn∥2 ≤ 2

(∫ tn+1

tn

(tn − t)∂ttρ(t)dt, ε
n+1

)

− 2δt

∫

Ω
ên ·∇ρ(tn+1)ε

n+1 − 2δt

∫

Ω
δu(tn+1) ·∇ρ(tn+1)ε

n+1.
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We now estimate the terms in the right-hand side of (40)

2

∫

Ω

(∫ tn+1

tn

(tn − t)∂ttdtρ(t)dt
)

εn+1 ≤ δt2
∫ tn+1

tn

∥∂ttρ(t)∥2dt+ δt∥εn+1∥2,

−2δt

∫

Ω
ên ·∇ρ(tn+1)ε

n+1 ≤ δt∥∇ρ∥2L∞(0,T,L∞(Ω))∥ê
n∥2 + δt∥εn+1∥2,

and

− 2δt

∫

Ω
δu(tn+1) ·∇ρ(tn+1)ε

n+1

≤ 2δt
3
2

( ∫ tn+1

tn

∥∂tu(t)∥2L4(Ω)dt
) 1

2 ∥∇ρ∥L∞(0,T,L4(Ω))∥εn+1∥

≤ δt2∥∇ρ∥2L∞(0,T,L4(Ω))

∫ tn+1

tn

∥∂tu(t)∥2L4(Ω)dt+ δt∥εn+1∥2.

Reporting the above inequalities in (40) and summing over n from 0 to j, with 0 ≤ j ≤ N − 1,
we have

∥εj+1∥2 ≤ δt2
(

∥∂ttρ∥2L2(0,T,L2(Ω)) + ∥∂tu∥2L2(0,T,L4(Ω))∥∇ρ∥2L∞(0,T,L4(Ω))

)

+ 3δt
j

∑

n=0

∥εn+1∥2 + δt∥∇ρ∥2L∞(0,T,L∞(Ω))

j
∑

n=0

∥ên∥2.

Using the discrete Gronwall Lemma 1, the assumption (36), and Remark 4 we derive

∥εj+1∥2 ≤δt2 exp(6T )
(

∥∂ttρ∥2L2(0,T,L2(Ω)) + ∥∂tu∥2L2(0,T,L4(Ω))∥∇ρ∥2L∞(0,T,L4(Ω))

)

+ δt exp(6T )∥∇ρ∥2L∞(0,T,L∞(Ω))

j
∑

n=0

∥en∥2.

We conclude the proof of Theorem 4 by multiplying by δt and summing over j from 0 to k, with
k ≤ N − 1, the above inequality. !

6.2. Final error estimates.

Theorem 5. Under the regularity assumption (34), if the initial conditions satisfy (6) and (35),
if θ < 1

2 , δt < 1/6, rα2
2 ≤

µ1

12(1+C(Ω)2) where C(Ω) is the Poincaré’s constant, then, for all n such

that 1 ≤ n ≤ N , the discrete velocity solution of the scheme (14)-(19) satisfies the following
error estimate

∥u(tn)− un∥2 + δt
N−1
∑

k=0

∥u(tk+1)− uk+1∥21 ≤ Cδt(δt + θ).

Proof. We first derive the error equation which is obtained by subtracting the two first equations
in (11) to the first equation in (16), namely we find

(41)

1

δt

[1

2
(ρn+1 + ρn)en+1 − ρnen

]

− div
(

2µn+1Den+1
)

+∇
(

p(tn+1)− (pn + qn)
)

= div
(

α(ρ(tn+1))Σ(tn+1)− αn+1Σn+1
)

+ div
(

2
(

µ(ρ(tn+1))− µn+1
)

Du(tn+1)
)

+Rn+1
1 +Rn+1

2 +Rn+1
3 +Rn+1

4 ,
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where

Rn+1
1 = ρn

u(tn+1)− u(tn)

δt
− ρ(tn+1)∂tu(tn+1),

Rn+1
2 =

1

2
u(tn+1)

(
ρn+1 − ρn

δt
− ∂tρ(tn+1)

)

,

Rn+1
3 = ρn+1ûn ·∇un+1 − ρ(tn+1)u(tn+1) ·∇u(tn+1),

Rn+1
4 =

1

2
un+1 div(ρn+1ûn)−

1

2
u(tn+1) div

(

u(tn+1)ρ(tn+1)
)

.

By virtue of the Korn’s inequality (see [22]), since en+1 ∈ H1
0(Ω), we have ∥∇en+1∥2 ≤

2∥Den+1∥2. Invoking the Poincaré’s inequality (∥en+1∥ ≤ C(Ω)∥∇en+1∥) and denoting CP =
(1 +C(Ω)2)−1, we obtain

4µ1CP δt∥en+1∥21 ≤ 4δt∥
√

2µn+1Den+1∥2.

We now take the inner product of equation (41) with 2δten+1 in L2(Ω). Using the last inequality
we obtain

(42)

∥σn+1en+1∥2 + ∥σn(en+1 − en)∥2 − ∥σnen∥2 + 4µ1CP δt∥en+1∥21

≤ −2δt
(

∇
(

p(tn+1)− (pn + qn)
)

, en+1
)

− 2δt
(

α(ρ(tn+1))Σ(tn+1)− αn+1Σn+1,Den+1
)

− 4δt
(
(

µ(ρ(tn+1))− µn+1
)

Du(tn+1),Den+1
)

+ 2δt
(

Rn+1
1 , en+1

)

+ 2δt
(

Rn+1
2 , en+1

)

+ 2δt
(

Rn+1
3 , en+1

)

+ 2δt
(

Rn+1
4 , en+1

)

.

In the following steps, we derive estimates of the terms occurring in the right-hand side of (42).
They are treated in order of appearance in (42).

Step 1. From (17) we obtain, for all g ∈ H1(Ω),

(43)
(

∇(rn+1 − rn),∇g
)

=
ρ1
δt

(en+1,∇g) + (∇δp(tn+1),∇g).

Taking g = −2δt2

ρ1
δ2rn+1 in (43), we have

−
δt2

ρ1

(

∥∇(rn+1 − rn)∥2 − ∥∇(rn − rn−1)∥2 + ∥∇δ2rn+1∥2
)

= −2δt(en+1,∇δ2rn+1)−
2δt2

ρ1

(

∇δp(tn+1),∇δ2rn+1
)

.

Taking g = 2δt2

ρ1
rn+1 in (43), we have

δt2

ρ1

(

∥∇rn+1∥2 − ∥∇rn∥2 + ∥∇δrn+1∥2
)

= 2δt(en+1,∇rn+1) +
2δt2

ρ1

(

∇δp(tn+1),∇rn+1
)

.
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By summing these last two equations, we deduce

(44)

δt2

ρ1

(

∥∇rn+1∥2 − ∥∇rn∥2 + ∥∇δrn∥2
)

−
δt2

ρ1
∥∇δ2rn+1∥2

= 2δt
(

en+1,∇(2rn − rn−1)
)

+
2δt2

ρ1

(

∇δp(tn+1),∇(2rn − rn−1)
)

.

From (43), we have
(

∇δ2rn+1,∇g
)

=
ρ1
δt

(δen+1,∇g) + (∇δ2p(tn+1),∇g).

Taking g = δt√
ρ1
δ2rn+1 in the above relation, we obtain

(45)

δt2

ρ1
∥∇δ2rn+1∥2 ≤

1

ρ1
∥ρ1δen+1 + δt∇δ2p(tn+1)∥2

≤ ∥σnδen+1∥2 +
δt2

ρ1
∥∇δ2p(tn+1)∥2 + 2δt

(

δen+1,∇δ2p(tn+1)
)

.

By summing (44) and (45), we deduce

δt2

ρ1

(

∥∇rn+1∥2−∥∇rn∥2 + ∥∇δrn∥2
)

≤ 2δt
(

en+1,∇(2rn − rn−1)
)

+
2δt2

ρ1

(

δp(tn+1),∇(2rn − rn−1)
)

+ ∥σnδen+1∥2

+
δt2

ρ1
∥∇δ2p(tn+1)∥2 + 2δt

(

δen+1,∇δ2p(tn+1)
)

,

which can be rewritten as

−2δt
(

en+1,∇(2rn − rn−1)
)

− 2δt
(

δen+1,∇δ2p(tn+1)
)

− 2δt
(

en,∇δ2p(tn+1)
)

≤−2δt
(

en,∇δ2p(tn+1)
)

︸ ︷︷ ︸

a1

−
δt2

ρ1

(

∥∇rn+1∥2 − ∥∇rn∥2 + ∥∇δrn∥2
)

+
2δt2

ρ1

(

δp(tn+1),∇(2rn − rn−1)
)

︸ ︷︷ ︸

a2

+∥σnδen+1∥2 +
δt2

ρ1
∥∇δ2p(tn+1)∥2

︸ ︷︷ ︸

a3

.

Using the Cauchy-Schwarz and Young’s inequalities, we obtain

a1 ≤ δt∥en∥2 + 2δt2
∫ tn+1

tn−1

∥∂tp(s)∥21ds,

a2 =
2δt2

ρ1

(
(

δp(tn+1),∇rn
)

+
(

δp(tn+1),∇δrn
)
)

≤
2δt2

ρ1

∫ tn+1

tn

∥∂tp(s)∥2ds+
δt3

ρ1
∥∇rn∥2 +

δt3

ρ1
∥∇δrn∥2,

a3 ≤
2δt3

ρ1

∫ tn+1

tn−1

∥∂tp(s)∥21ds.
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We finally deduce

−2δt
(

∇
(

p(tn+1)− (pn + qn)
)

, en+1
)

≤ −
δt2

ρ1

(

∥∇rn+1∥2 − ∥∇rn∥2
)

+
δt3

ρ1
∥∇rn∥2

+ ∥σnδen+1∥2 + δt2
(
2 + 4δt

ρ1
+ 1

)∫ tn+1

tn−1

∥∂tp(s)∥21ds+ δt∥en∥2.

Step 2. We write

(46)

−2δt
(

α(ρ(tn+1))Σ(tn+1)− αn+1Σn+1,Den+1
)

= −2δt
(
(

α(ρ(tn+1))− αn+1
)

Σ(tn+1),Den+1
)

− 2δt
(

sn+1,αn+1Den+1
)

≤ δt
µ1CP

2
∥en+1∥21 + δt

2∥α′∥2∞
µ1CP

∥εn+1∥2 − 2δt
(

sn+1,αn+1Den+1
)

.

In order to treat the last term in the right-hand side of (46), we use the relation (9) on Σ with
ℓ = rαn+1, namely

Σ(tn+1) = P
(

Σ(tn+1) + rαn+1Du(tn+1)
)

,

so that

sn+1 = P
(

Σ(tn+1) + rαn+1Du(tn+1)
)

− P
(

Σn+1 + rαn+1Dun+1 + θ(Σn −Σn+1)
)

.

Since P is a projection, we have

|sn+1| ≤ |sn+1 + rαn+1Den+1 + θ(sn − sn+1) + θδΣ(tn+1)|.

Taking the square of this inequality leads to

|sn+1|2 ≤|sn+1|2 + r2(αn+1)2|Den+1|2 + θ2|sn − sn+1|2 + θ2|δΣ(tn+1)|2

+ rsn+1 : αn+1Den+1 + θsn+1 : (sn − sn+1) + θsn+1 : δΣ(tn+1)

+ rθαn+1Den+1 : (sn − sn+1) + rθαn+1Den+1 : δΣ(tn+1)

+ θ2(sn − sn+1) : δΣ(tn+1).

Using the Cauchy-Schwarz and the Young’s inequalities, the identity 2a(a−b) = a2−b2+(a−b)2,
integrating over Ω, and multiplying by 2δt

r , we obtain

−2δt(sn+1,αn+1Den+1) ≤ 6δtrα2
2∥Den+1∥2 +

2θ

r
(3θδt+ 1)∥δΣ(tn+1)∥2

−
2θ

r
δt(1 − δt)∥sn+1∥2 +

2θ

r
δt∥sn∥2.

By reporting the last inequality in (46) we deduce

− 2δt
(

α(ρ(tn+1))Σ(tn+1)− αn+1Σn+1,Den+1
)

≤
(µ1CP

2
+ 6rα2

2

)

δt∥en+1∥21 + δt
2∥α′∥2∞
µ1CP

∥εn+1∥2

+ δt
2θ(3θδt+ 1)

r

∫ tn+1

tn

∥∂tΣ(s)∥2ds−
2δtθ

r

(

(1− δt)∥sn+1∥2 − ∥sn∥2
)

.
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Step 3. The third term in the right-hand side of (42) is bounded as follows

−4δt
(
(

µ(ρ(tn+1))− µn+1
)

Du(tn+1),Den+1
)

≤δt
8∥µ′∥2∞
µ1CP

∥Du∥2L∞(0,T,L∞(Ω))∥ε
n+1∥2 + δt

µ1CP

2
∥en+1∥21.

Step 4. Using the Sobolev embedding H1(Ω) ⊂ L6(Ω) in addition to the Cauchy-Schwarz
inequality, the Young’s inequality and Taylor’s formulae, we deduce

2δt(Rn+1
1 , en+1) ≤

6CS

µ1CP
δt∥εn∥2∥∂tu∥2L∞(0,T,L3(Ω)) + δt

µ1CP

2
∥en+1∥21

+
6CS

µ1CP
δt2

(

ρ22

∫ tn+1

tn

∥∂ttu(s)∥2L6/5(Ω)ds+ ∥∂tu∥2L∞(0,T,L3(Ω))

∫ tn+1

tn

∥∂tρ(s)∥2ds
)

,

where CS is the continuity constant from the Sobolev embedding H1(Ω) ⊂ L6(Ω), that is, for
all f ∈ H1(Ω), we have ∥f∥2L6(Ω) ≤ CS∥f∥21.

Step 5. Using (14) and the first equation of (11), we write

Rn+1
2 =

1

2
u(tn+1)

(

δu(tn+1) ·∇ρ(tn+1) + u(tn) ·∇εn+1 + ên ·∇ρn+1

)

.

Recalling that both u and ên are divergence-free vector fields, we obtain

Rn+1
2 =

1

2
u(tn+1) div

(

δu(tn+1)ρ(tn+1) + u(tn)ε
n+1 + ênρn+1

)

.

From the above equality, performing an integration by parts and using the identity ∇(u · v) =
∇u · v +∇v · u, for any u and v in H1(Ω), we derive

2δt(Rn+1
2 , en+1) =− δt

(∫

Ω
ρn+1ên ·

(

∇u(tn+1) · en+1 +∇en+1 · u(tn+1)
)

+

∫

Ω
εn+1u(tn) ·

(

∇u(tn+1) · en+1 +∇en+1 · u(tn+1)
)

+

∫

Ω
ρ(tn+1)δu(tn+1) ·

(

∇u(tn+1) · en+1 +∇en+1 · u(tn+1)
)
)

.

Proceeding as in the previous steps, we deduce

2δt(Rn+1
2 , en+1) ≤

µ1CP

2
δt∥en+1∥21

+
3δt

µ1CP

(

∥u∥2L∞(0,T,L∞(Ω)) + CS∥∇u∥2L∞(0,T,L3(Ω))

)

×
(

ρ22∥ên∥2 + ∥u∥2L∞(0,T,L∞(Ω))∥ε
n+1∥2

)

+
3ρ22
µ1CP

δt2
(

∥u∥2L∞(0,T,L∞(Ω)) +CS∥∇u∥2L∞(0,T,L3(Ω))

) ∫ tn+1

tn

∥∂tu(s)∥2ds.
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Step 6. Using (12), we have

2δt(Rn+1
3 +Rn+1

4 , en+1) = −2δtb̃
(

ρ(tn+1)δu(tn+1),u(tn+1), e
n+1

)

− 2δtb̃
(

ρn+1ên,u(tn+1), e
n+1

)

− 2δtb̃
(

εn+1u(tn),u(tn+1), e
n+1

)

.

Proceeding as above, we obtain

2δt(Rn+1
3 +Rn+1

4 , en+1) ≤ δt
µ1CP

2
∥en+1∥21

+ δt
3ρ22

µ1CP ρ21

(

∥u∥2L∞(0,T,L∞(Ω)) + 9CS∥∇u∥2L∞(0,T,L3(Ω))

)

∥σnen∥2

+ δt
3

µ1CP
∥u∥2L∞(0,T,L∞(Ω))

(

∥u∥2L∞(0,T,L∞(Ω)) + 9CS∥∇u∥2L∞(0,T,L3(Ω))

)

∥εn+1∥2

+ δt2
3ρ22
µ1CP

(

∥u∥2L∞(0,T,L∞(Ω)) + 9CS∥∇u∥2L∞(0,T,L3(Ω))

)
∫ tn+1

tn

∥∂tu(s)∥2ds.

Step 7. The final estimate is obtained by applying the discrete Gronwall Lemma 1. Let us first
consider the particular case n = 0. Using hypothesis (35) and the previous error equations, we
deduce

∥e1∥2 + δt∥e1∥21 + δtθ∥s1∥2 + δt2∥∇r1∥2 ≤ Cδt(θ + δt).

General case (n ≥ 1). Now, using steps 1 to 7, we finally obtain

∥σn+1en+1∥2 − ∥σnen∥2 +
δt2

ρ1

(

∥∇rn+1∥2 − ∥∇rn∥2
)

+
2θδt

r

(

∥sn+1∥2 − ∥sn∥2
)

+
3

2

(

µ1CP − 4rα2
2

)

δt∥en+1∥21

≤
δt3

ρ1
∥∇rn∥2 +

2θδt2

r
∥sn+1∥2 +

(

1 +
6ρ22
µ1CP

K(u)
) δt

ρ21
∥σnen∥2

+
2

µ1CP

(

3∥u∥2L∞(0,T,L∞(Ω))K(u) + ∥α′∥2∞ + 4∥µ′∥2∞∥Du∥2L∞(0,T,L∞(Ω))

)

δt∥εn+1∥2

+
6CS

µ1CP
∥∂tu∥2L∞(0,T,L3(Ω))δt∥ε

n∥2 +
6ρ22
µ1CP

K(u)δt2
∫ tn+1

tn

∥∂tu(s)∥2ds

+
2

r
(3θδt+ 1)θδt

∫ tn+1

tn

∥∂tΣ(s)∥2ds+
(

1 +
2

ρ1
(1 + 2δt)

)

δt2
∫ tn+1

tn−1

∥∂tp(s)∥21ds

+
6CS

µ1CP
δt2

(

ρ22

∫ tn+1

tn

∥∂ttu(s)∥2L6/5(Ω)ds+ ∥∂tu∥2L∞(0,T,L3(Ω))

∫ tn+1

tn

∥∂tρ(s)∥2ds
)

,

with K(u) =
(

∥u∥2L∞(0,T,L∞(Ω)) + 9CS∥∇u∥2L∞(0,T,L3(Ω))

)

. Summing the last equation over n

from 1 to k with 0 ≤ k ≤ N −1, using 6rα2
2 ≤

µ1CP
2 , Theorem 4, the discrete Gronwall Lemma 1

and the case n = 0, we deduce, for all 0 ≤ k ≤ N − 1,

(47)

∥σk+1ek+1∥2 +
δt2

ρ1
∥∇rk+1∥2 +

2θδt

r
∥sk+1∥2

+ δtµ1CP

N−1
∑

n=0

∥en+1∥21 ≤ Cδt(δt+ θ),
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which concludes the proof of Theorem 5. !

Remark 5. From the inequality (47), we deduce that, for all n such that 0 ≤ n ≤ N − 1,

∥∇rn+1∥2 ≤ C
δt+ θ

δt
.

Taking θ = δt, we obtain, for all n such that 0 ≤ n ≤ N − 1,

∥∇pn+1∥ ≤ C,

where C is independent of δt.

7. Conclusion

We have proposed and analyzed in this paper a new scheme for the temporal discretization of
incompressible equations describing the motion of Bingham fluids with variable density, plastic
viscosity and yield stress. A fractional time-stepping algorithm is coupled with a projection
formulation for the definition of the plastic tensor. This approach, also used in the Uzawa-like
algorithm for solving viscoplastic flows, allows to handle the non-differentiable definition of the
stress tensor in the Bingham constitutive laws. The first sub-time step of the bi-projection
scheme consists in computing a non-solenoidal velocity field and is followed by a projection step
so that the final velocity field is divergence free. In classical projection methods, the Helmholtz
decomposition is invoked for this projection resulting in a Poisson equation satisfied by the
pseudo-pressure. Extending this approach to density-variable flows will lead to a second-order
elliptic equation with variable coefficients for the pressure. Another approach based on the
interpretation of projection methods in terms of a penalty method, Guermond and Salgado
in [18, 19] derived a fractional time-stepping scheme where the computation of the pressure
is achieved by solving one standard Poisson equation per time step. Unlike in [18, 19], the
divergence-free velocity is used as convective velocity in the mass conservation equation. This
point is of major importance as it ensures a maximum principle for the discrete continuity
equation. Lower and upper bounds on the density are obtained.
The plastic part of the stress tensor is treated implicitly into the first sub-step (prediction step)
of the fractional time-stepping method. As in the Uzawa-like method for Bingham flows, a
fixed-point algorithm is used to compute the plastic tensor. Due to a pseudo-time relaxation
term added in the Bingham projection operator, the convergence is geometric with common
ratio (1 − θ) where θ is a prescribed relaxation parameter. The main results derived in this
paper are the unconditional stability and the convergence of the bi-projection scheme. More
precisely, errors committed by approximating the velocity and the density are bounded from
above by a term of the order of

√

δt(δt + θ). Hence, by choosing θ of the order of the time step
ensures the error of the bi-projection scheme to be of first order.
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