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Summary

In this paper, it is shown how vaporous cavitation in lubricant films can be modelled in a 
physically justified manner through the constitutive (compressibility) relation of the fluid. It is 
shown how the widely used Jakobsson-Floberg-Olsson (J.F.O.) / Elrod-Adams (E.A.) mass 
flow conservation model, can be compared with this new model. Moreover the new model can 
incorporate the variation of the viscosity in the cavitation region and allows the pressure to 
fall  below  a  cavitation  pressure.  Numerical  computations  show  that  discrepancy  with 
J.F.O./E.A. is mostly associated with light loading condition, starved situation or viscosity 
effects.

1 Introduction

It will be shown in this paper how continuum methods in which the flow is treated as an 
homogeneous compressible mixture allow to recover the main features of the widely used 
Jakobsson-Floberg-Olsson (J.F.O.) / Elrod-Adams (E.A.) mass flow conservation model for 
cavitation  by  using  a  generalized  compressible  Reynolds  equation  as  a  thin  film 
approximation model. 

Cavitation is a phenomenon occurring in numerous lubricated devices, mostly in the regions 
of  diverging  contact  geometry  where  sub-ambient  pressures  can  exist,  and  implies  some 
diphasic characteristics for the lubricant. As early as 1956, experiments have been conducted 
by  Cole  and  Hughes  [1]  for  various  mechanisms  which  show  the  complexity  of  the 
phenomenon. Cavitation has also been discussed  in 1961 in the book of Pinkus and Sternlicht 
[2] . In  Zeidan and Vance [3], various  distinct operating regimes were identified in squeeze 
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film dampers. Other experiments are reported in Braun and Hendricks [4] for steady-state 
journal bearings, Sun and Brewe [5] for submerged bearings or San Andres and Diaz [6] for 
open-end submerged dampers, Ku and Tichy [7]  for submerged squeeze film dampers.  An 
extended review by Braun and Hannon may be found in  [8].  Various types of models have 
been proposed to deal with this phenomenon and can be classified roughly in two categories. 
In the first one, the main feature of the cavitation phenomenon is the appearance of  two 
distinct areas: the cavitation region and the full film one. The second kind of model leads to a 
generalized Reynolds equation satisfied on the whole contact area similar to the one proposed 
by Zuber and Dougherty in [9] for a two-phase fluid with droplets flying inside the fluid or by 
Chamniprasart et al [10 ] for bubbly fluid. 

Despite various physical meanings, the first category of models belongs to the free boundary 
problems: It is essentially based upon the computation of the free (unknown) boundary of the 
cavitation  area  (Dowson Taylor  [11]).  The Reynolds  or  Swift-Stieber  boundary condition 
associated with the Christopherson [12] algorithm has been widely used although it is not a 
mass  flow  conservative  model.  Jakobsson-Floberg-Olsson  (J.F.O.)  [13]  type  models  are 
essentially mass conserving. One of the most popular algorithms to deal with this model is the 
Elrod-Adams (E.A.) [14]  cavitation algorithm. In this pioneering article, a new formulation 
of the original JFO model is first addressed by introducing the fractional film content in the 
cavitation  area.  In  a  second  step,  introduction  of  a  compressibility  parameter  in  the  non 
cavitated area and of a switch function allows to reformulate the problem in terms of a new 
variable. This variable satisfies a unique equation and has different interpretations in each of 
the subregions. This approach allows easier computation than the earlier JFO model.
Improvements of this algorithm have been proposed by Vijayaraghavan and Keith [15]  and 
Brewe [16].  An equivalent  “flow model”  was  used  in  Hirayama,  Sakurai  and  Yabe  [17] 
(following  an  idea  of  Ikeuchi  and  Mori  [18]  in  which  both  density  and  viscosity  vary, 
retaining  the  basic  ideas  of  the  Elrod-Adams  algorithm).  Other  procedures  have  been 
proposed by Tichy [7],  Bayada,  Chambat  and Elalaoui  [19],  Kumar and Booker  [20]   or 
Hajjam  and  Bonneau  [21].  They   solve  the  JFO  model  retaining  the  two  unknowns 
formulation ( pressure and fractional film content) of J.F.O./E.A. model without introducing 
the compressibility effects of the Elrod Adams algorithm.

It should be noted in these previous models that the pressure must be constant in the cavitated 
area and never falls below the cavitation pressure. However, sub-ambient pressure loop have 
been observed as early as 1982  by Etsion and Ludwig [22] and Braun and Hendricks [4] one 
year later. Values of pressure as small as 0.07 MPa. have been observed. At least two models 
overcome this deficiency and allow a small sub ambient pressure loop upstream of the point 
of separation: the flow separation model (Dowson and Taylor [11]) and the Coyne and Elrod 
model  [23,24].  However  these  models  have  been  described  for  2-dimensional  geometry 
(infinitely long devices, one dimensional Reynolds equation). They are not extended in their 
known form to a 3-D geometry. A model of dynamic cavitation incorporating surface tension 
and contact angle for parallel plate oscillatory squeeze film bearing has been proposed by Sun 
et  al  [25].  This  model  used the  axisymmetrical  assumption:  A one-dimensional  Reynolds 
equation is used together with an ordinary differential equation  describing the evolution of 
the cavitation bubble. The model preserves mass conservation in the cavitation region and 
allows the occurrence  of  tensile  stresses  in  the  film.  The role  of  the surface  tension and 
contact angle is incorporated in the model. Geike and Popov [26] roughly follow the same 
idea. Numerical results show good agreement with those of  Bodeo and Booker [27]. Two 
other descriptions of the cavitation using a free boundary approach have been proposed by 
Grooper and Etsion [28,29]. In the first paper, the effect of the shear of the cavity bubble by 

2



the lubricant and of the gas diffusion through the interface is investigated while in the second 
paper the reverse flow phenomenon is included in the model: A reverse flow front develops in 
the full film region at the cavitation end, penetrates the cavitation and withdraws backward 
into  the  cavitation  bubble. Compared  with  experiments,  numerical  results  show  that  the 
reverse  mechanism  is  capable  of  generating  more  realistic  pressure  than  the  first  model 
mentioned.  Let  us  mention  also  the  work  of  Pan,  Kim  and  Rencis  [30]  based  on  a 
reinterpretation of experimental photographic data which is however limited to an infinitely 
long device: The model stipulates a 3-D flow structure for transition from  the filled fluid film 
to  a  cross-void  fluid  transportation  process.  The  transition  starts  as  a  two-component 
composite rupture front and becomes an adherent film. 
Note that another limitation using the free boundary approach like the J.F.O. model is the 
computation  of  the friction  force   in  the  cavitation  area  as  information  in  this  zone only 
concerns the pressure.

In  the  second  category  of  models,  the  existence  of  a  macro-bubble  of  cavitation  is  not 
assumed “a priori”. Cavitation is deduced from  the solution of  the constitutive equations of 
the lubricants so that a better knowledge of the characteristics of the mixture is necessary. 
Numerous papers have been devoted to this goal such as the one of  Feng and Hahn [31]. 
Chamniprart et al [10] extended hydrodynamic lubrication theory to lubrication with mixtures. 
In this paper,  a system of Reynolds like equation equations is obtained. Both relative gas 
bubble size and inlet air fraction are taken into account. Tao et al [32] proposed a continuum 
model  describing  the motion of a bubbly fluid  in  an open ended squeeze film damper. 
Bubbles  of  perfect  gas   are  dispersed  in  an incompressible  fluid with  equal  velocity.  An 
isothermal  process is  assumed.  They obtained a simpler  thin film flow equation  which is 
nothing else than a compressible Reynolds equation with an hyperbolic density-pressure law. 
Later on, Diaz and San Andres [33] used the same Reynolds equation with simpler viscosity-
pressure law to study squeeze film dampers operating with bubbly fluids.  Comparisons of 
predictions and test results show a relatively good correlation. Discrepancy is attributed to the 
existence of a large bubble which disrupts the mixture homogeneity.
More recently Xing, Braun and Li [34,35] used a full  Navier-Stokes model  with variable 
density and viscosity due to the change of void fraction (gaseous cavitation). Comparisons are 
made with both the Reynolds classical solution (without cavitation or with half Sommerfeld 
model) and with  experiments. Van Odyck and Venner [36] also used a compressible Navier-
Stokes system. They used a multigrid code and compared the solution of the Navier-Stokes 
equations with the one of Elrod-Adams. The results seem to demonstrate some limitations of 
the validity of the Reynolds compressible equation.
Finally  it  is  possible to  use  some commercial  codes  such as  Fluent  or  CFX to  compute 
cavitating  flows. In these codes and more generally  in fluid mechanics  [37], the fluid is 
assumed to be a mixture of liquid, vapour and non-condensable gases. Navier Stokes equation 
and continuity equations are written for the density. An additional transport equation for the 
vapor phase takes into account mass transfer between vapor and liquid. Mass fraction of non-
condensable gas  is a given constant. Evolution of the radius of the bubbles is often computed 
from the Rayleigh-Plesset  equation to define mass transfer terms.
To summarize this introduction, it can be said that there are two types of approaches to model 
cavitation:  On one hand,  models based on a separation between a cavitated and a full film 
region, and on the other hand models in which a detailed description of the flow at a mixture 
level is needed. It will be shown how J.F.O./E.A. model can be derived from such Navier-
Stokes flow detailed description.

2 Theory
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Let us consider as a starting point the compressible Navier-Stokes  equations with variable 
density  and  (dynamic)  viscosity.  We  will  show  how  is  it  possible  to  gain  a  thin  film 
approximation which retains simultaneously both usual compressibility effects due to high 
pressures  and  phase transition. The model assumes that the lubricant can be described in an 
unified manner in both cavitated and non cavitated regions as an “equivalent” homogeneous 
compressible fluid. So, we will not be able to see “the details” of what happens in the real 
cavitation region. In its present form, non condensable gaz region is neglected so that only the 
vaporous cavitation is considered. It will be shown however that it allows to recover much of 
the properties of the J.F.O./E.A. model, improving it in some aspects. What we will denote by 
“cavitation region” will be the area in which the local density is less than the density of the 
liquid and greater than that of the vapour. In other words, the cavitation region will be a 
region of mixture.
In nearly all of the previous cited works, thermal effects are assumed to be negligible in the 
description of the cavitation model and a three dimensional energy equation is not considered. 
It can be taken into account in a second step by making coefficients of Reynolds equation (4) 
as a function of both density and temperature and introducing simplified energy equation as in 
Durany et all [38] . 
Continuity and momentum equations   are:
 
∂ ρ ui 

∂ t
+u j

∂ ρ ui 

∂ x j

=ρ f i
∂ σ ij

∂ x j

1 

∂ ρ
∂ t


∂ ρu j 

∂ x j

=0 2 

with σ ij= 2μ λεkk−p  δ ij 3 

     

In which  ui   are the velocity  components,  p  the pressure, µ the viscosity(dynamic),  ρ the 
density, f  the external forces and λ a Lamé coefficient.
For known functions p(ρ),  λ(ρ) and µ(ρ) and convenient boundary conditions, the goal is to 
compute the pressure field (or equivalently the density) and the velocity field satisfying (1)-
(2)-(3).  There  are  several  possibilities  for  the  choice  of  λ:  the  value  λ=  -2µ/3  (Stokes 
assumption)  is  often  used.  However  it  is  not  true  for  a  lot  of  fluid  and  the  choice 
λ(ρ)=2(ρ µ'(ρ)−µ(ρ)) has been proposed in [39]. This choice together with other assumptions 
concerning the behaviour of p(ρ), dp/dρ , µ(ρ) , dµ/dρ  for large and small values of ρ allows 
to prove the well posedness of the system (1)(2)(3) in [39]. 

To obtain  a  thin  film approximation  of  equations  (1)-(2)-(3)  is  not  obvious.  It  has  been 
pointed  out  by  Bair,  Khonsari  and  Winer  [40]  that  the  “fact  of  reintroducing  some  
compressibility  aspects  in  the  Reynolds  equation  after  some  non  dimensionalization  and  
simplification, starting from incompressible Reynolds equation can be logically questioned”. 
It  has  been  recently  rigorously  proven  by  Chupin  and  Sart  [41]  that  the  narrow  gap 
approximation of the Navier-Stokes compressible equation (1)-(2)-(3) is exactly the “usual” 
compressible  Reynolds  equation.  In some sense,  this  work is  a mathematical  proof and a 
generalization  to  compressible  flows of  an already proposed process in  [42]  and [43] for 
variable viscosity thin film flow.
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Such a Reynolds equation is written down  for a model device with a small gap h(x1,x2)  in 
which the upper part is fixed and the flat lower part has a constant velocity u along the x1-
main direction (see figure1).

∂

∂ x1


h3

12 μ ρ 
G  ρ

∂ ρ
∂ x1


∂

∂ x2


h3

12 μ  ρ
G ρ

∂ ρ
∂ x2

=u/2
∂ρh 
∂ x1


∂ ρh 
∂ t

       (4) 

        

                         with        G  ρ =ρ
dp
dρ

                                                                            (5)

 

Using  the  known one  to  one  pressure-density  relation,  it  is  also  possible  to  consider  as 
unknown the pressure instead of the pressure by a simple change of function in the Reynolds 
equation (4).  This expression is  more convenient  for comparison with previous  cavitation 
models like the  JFO/EA models .

∂

∂ x1


h3

12 μ  p 
 ρ p 

∂ p
∂ x1


∂

∂ x2


h3

12 μ p 
 ρ p 

∂ p
∂ x2

=u/2
∂ ρ p h 

∂ x1


∂ ρ p h 

∂ t
    (6) 

             

a) pressure-density relation
We choose a model based upon an isentropic assumption (7)  which seems to be well adapted 
to the vaporous cavitation and is already widely used for cavitating flow([44],[45],[46]):
                                                             

                                                                     
dp
dρ

=c f
2                                                          (7)

in which cf  is the speed of sound in the medium. Equation (7) must be  integrated  to compute 
the pressure-density relation which it is necessary to know explicitly to  solve equation (5).
In the context of a simplified model for the vaporous cavitation,  we are led to consider 3 
distinct  regimes,  one of mixture  Am,  one of pure vapour Av and one of pure liquid Al . 
Coexistence of these 3 regimes implies physically a non-constant temperature. It has to be 
mentioned however that numerous experimental works as the recent one of Cristea, Bouyer, 
Fillon and Pascovici  [47] show the existence of some temperature  gradients,  nevertheless 
small in cavitated bearings. This fact supports the possibility for the present theory in which 
the energy equation is neglected.

Let Pvm be the upper limit value of the pressure in Av (also called the wet point) and Pml the 
lower limit of the pressure in Al  (also called the bubble point). At a given temperature, this 
velocity is assumed to be a  known constant for each of the regimes Av and Al , says cv and cl. 
In the mixture regime the sound velocity varies with the density ρ. Let us consider the void 
fraction α (Volume of vapour/volume total) . We have:

                                                           α=(ρ−ρl)/(ρv-ρl)                                      (8a)
Or equivalently:
                                                         ρ(α)= (1−α) ρl + α ρv                                (8b) 
in which ρv   and ρl  are the density of the vapour and of the liquid at the wet point and the 
bubble point respectively so that 0<α<1 as soon as  ρv<ρ<ρl .
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 It is possible to use equation (8a) to generalize the definition of α for ρv>ρ  and ρ>ρl  . Thus 
α could be less than 0 in Al (compressibility case if  ρ>ρl) or greater than 1 in Av  (rarefying 
situation if ρv>ρ). In these last cases, the initial definition of α as the volume fraction of the 
vapour is no longer valid. Symbol  α will be retained to avoid  introduction of additional 
notation.
 
Various models have been proposed for computing the velocity in the mixture region. In the 
sequel  the relation proposed in Moreau [46] or Van Wijngaarden [48]  will be used:

                                     
1

c f
2 =ρ 

α

cv
2 ρv


1−α

cl
2 ρl

                                                               (9)

In this model, surface tension and mass transfer between vapour and liquid are neglected. It 
allows easy computation of the pressure-density law as follows:  

The first step to gain this pressure-density law is to integrate equation (7) with respect to ρ in 
each of the 3 regions Am, Al  and Av  using the expression (8) in Am, so introducing 3 unknowns 
(The 3 constants of integration). Then taking into account that p(0)=0,  the continuity of the 
pressure and of the derivative of the pressure for ρ=ρv  and for  ρ=ρl  ,  a system of 5 equations 
is obtained . The 5 unknowns: Pvm and Pml  (which will be also denoted Psat) and the 3 constants 
of integration can now be calculated to obtain: 

               

Pvm=ρv cv
2 10 a

Pml =ρv cv
2−N log 

ρv
2 cv

2

ρl
2c l

2
 10 b 

with N=
ρv cv

2 ρl c l
2 ρv−ρ l

ρv
2 cv

2−ρl
2c l

2
10c 

                  

                   

           

pα =cv
2 ρα  if α> 1 11a 

pα =Pml ρα −ρl cl
2 if α< 0 11b 

pα =Pml +N log 
ρv c v

2 ρα 

ρl ρ v cv
2 1−α +ρl c l

2α 
 if 0 <α< 1 12 

 

             
Equations (10)-(11)-(12) allow to compute the pressure –density relation as soon as the values 
of the velocity of the sound and the density are known for each of the pure regimes at a given 
temperature An example of such a pressure-density function obtained from equations (10)-
(11) is given in Figures 2 and 3. Discussion about the influence of these coefficients on the 
solution of the equations (4)(5)(6) will take place in section 4. 

b) viscosity-density relation in the mixture
There exists  various formulae to  obtain the viscosity  of a mixture [49,50,51,52] from the 
known values in the pure regimes  µl and  µv at a given temperature.   In the following, we 
choose to use two of them which have been recently put forward in [34] and in [53] in the 
lubrication area: 
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μα =αμv1−α μ l Dukler assumption  13 

1/ μα =M α / μv1−M α / μl McAdams assumption 14 
                    

          
In which M is the mass fraction of the vapour defined for 0<α<1  by: 

M α =α
ρv

ρα 
                                                                                                   (15)

To be noted also that these formulae are valid for a mixture of vapor –liquid from the same 
fluid  and not from a mixture of two different fluids for which another laws must be used. 
The previous Reynolds equations (4)-(5) can also be written down  in dimensionless form by 
making the change of variable (8b). This can be more convenient for computation as α as a 
limited range. 
Let l be the characteristic length in the cross film direction, L1 in the main direction of the 
device, L2 in the axial direction,V a characteristic value of the velocity, see Figure 1. Let us 
introduce :

H = h/l,     X1 = x1 /L1,        X2 = x2/L2,,      S = u/V,      ρ∗ = ρ/ρl,,  t*= t V/L1         

µ∗ = µ/µl,      p* = pL1
2/L2Vµl        rc = cv/cl,      rρ = ρv/ρl,      rµ = µv/µl, 

and the dimensionless modified Reynolds number:

ℜ= lcl 
2 ρl / L1 Vμl   

Performing the change of variable defined by equation (8), using equations 11(a),11(b),(12) to 
compute G(ρ) in (6) in terms of α ,the Reynolds compressible equation (5) can be rewritten 
as:

 r ρ−1  ℜ [ ∂

∂ X1

 H3
X 

Q α 

12 μ∗α 
∂α
∂ X1

  L1 /L2 
2 ∂

∂X 2

H 3
 X 

Qα 

12 μ∗α 

∂α
∂ X 2

]=
∂

∂ t∗¿
H  X  α r ρ1−α  16 

¿
1
2

S
∂

∂ X1

 H  X  α r ρ1−α  +with

Q α =1−α +α r ρ if α<0 ; 17 

Q α =1/ 1−α 
α

r ρ r c
2
 if 0<α< 1 18

Q α =rc
2  1−α +α r ρ  if α> 1 19 

It should be noted that the dimensionless number ℜ only relies on rheological values of the 
liquid phase while Q only depends on the ratio of the pure vapour and pure liquid density and 
speed of sound. Moreover the pressure density law (10)-(11)-(12) is implicitly included in the 
coefficients with Q(α).

Let us remark that the present  model can give an approximate value for the bulk modulus β 
used  in  the  Elrod-Adams  algorithm  ([14],page  39)  (see  the  following  section  for  more 
comments): The bulk modulus β is such that:
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p=Pcav β log 
ρ
ρc

=Pcav +β log 1
ρ−ρc

ρc

≃                (20)

At the beginning of the non cavitated area, ρ is close to ρc  so that the last portion of equation 
(20) can be approximated by Pcav +β  ρ−ρc/ ρ .

This can be compared with equation (11b). As Pcav and ρc in [14] have the same meaning than 
Pml and ρl in section 2 , so they are identical and we get: 

                                                       β≃≈ ρl cl
2                                                               (21)

3 Comparison of compressibility laws

In this section, we compare the compressibility law of the present theory defined by equations 
(10)-(11)-(12) with some other laws which are used in the lubrication literature. Qualitative 
agreement with J.F.O. / E.A. model seems to be good, supporting the fact that compressibility 
effects are the basic ingredient for J.F.O. like cavitation  models.

In this pioneering paper [14], Elrod and Adams firstly gave a new formulation of the initial 
J.F.O. model in which the cavitation is associated with a function θ  (such that 0≤θ≤1 ) used 
to describe the “mass flow in the cavitated region”(Floberg’s hypothesis). Then, they applied 
the usual (pressure-density)  relation in the full film region, assuming a constant bulk modulus 
β defined by (20) and defining  θ in this region as the ratio ρ/ρc.
They retained the assumption of constant pressure (p=Pcav) in the cavitation area defined by 
(ρ<ρc)  and the condition  p>Pcav  in the full film area defined by (ρ>ρc). The related equation 
is assumed to be easier to solve than the one in the J.F.O. model 
Although not mentioned in the text, the proposed model  described by equation (15) in [14] 
can  be  also  viewed  as   a  compressible  Reynolds  equation  with  constant  viscosity  and a 
pressure compressibility law as the one in Figure 1  (see also Figure 2 of [13]) .
The choice β=0.069 GPa in [14] was not discussed in the paper. Computation with this value 
is easier than using higher values. It is however much smaller than the value obtained  with 
equation (21) or predicted by various authors [54]  which is around 2 GPa for water or oil. If 
the goal is to use E.A. to solve J.F.O. model which assumes incompressible materials, we 
must have to choose a higher value for β. Computation of the solution of  equation (16) shows 
that  β must  be chosen as  high  as  1000 GPa to  obtain  a  good approximation  of  the JFO 
solution  if  the pressure reaches  40 Mpa. Let  us  also remark that  the original  JFO model 
corresponds to a pressure-density law with straight horizontal part  for p>Pcav (infinite value 
for β).
  
Sahlin,  Almquist,  Larsson  and  Glavatskih  [55]  don’t  modify  the  whole  Elrod-Adams 
strategy . They proposed to use the following Dowson and Higginson expression (22) which 
connects pressure and density  [56]:

                       p=Pcav +C1

ρc−ρ

ρ− ρc C2
                                                           (22)

They use the original expression (C1=0.59 109, C2=1.34) instead of (20) or a modified one 
fitted to experimental data (C1=2.29 109  , C2=1.66) .
They showed how discrepancies appear between the pressure computed by their procedure 
and the solution to the E.A. model. They highlight the importance of the choice of the bulk 
modulus parameter.
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A different pressure compressibility relation has been proposed by Van Odyck and Venner 
[36], based on the work of Dellannoy and Kueny [57] and of  Hoeijmakers, Jansens and Kwan 
[58]for a two phase flow problem.  For numerical computations, the viscosity is taken to be 
constant everywhere although a possible variation with respect to the pressure is mentioned. 
The pressure-density relationship is such that 

                           
ρ=ρv for p<P cav−Δp 23a 
ρ=ρl for p<Pcav +Δp 23b   

                                                                    
while in the mixture they get:

                    

ρ=ρv +Δρ 1sin
p−Pcav

Δρ c min
2

 24 a 

with Δρ=1/2 ρl−ρv  24 b
Δp=1/2 π Δρ 24c 

and cmin
2 =2cv  ρv

ρl

24 d 

  

A comparison for these various compressibility laws is given in fig (2)-(3).
For the present model, the data used are: 

ρv=1 kg /m3 ρl=998 kg /m3 cv=343 m /s c l=1480 m /s

The bulk modulus used for E.A model  is the one given by equation (21), let  β=2.2 GPa. It is 
clear from fig (2) that the  density-pressure  curves defined by (11)-(12) and (23)-(24) are 
globally  very closed. How to choose Pcav is not specified in [36]. It has been arbitrarily fixed 
in (Fig 2)  as Pcav = (Pvm+Pml)/2. However another choice like  Pcav = Pml could  give a better 
correlation  in  the  transition  zone.  Some  discrepancies  occur  for  high  pressure  values  as 
compressibility effects are ignored in (23)-(24).
Let us mention also that if the values of cl and ρl can be relatively easily known [46], this is 
not the case for cv and ρv . As it will be seen in section 4, changing the values of cv and ρv 

induces changes in Pml.  This does not modify  however the overall  shape of the pressure-
density  relation.  Choosing for  Pcav in  (23)-(24)  or  in E.A.  model   the  same value  as  Pml 

maintains a good correlation between the various models.
For higher pressure, the present model is very close to the E.A. one up to 0.3 GPa  while some 
discrepancies  appear  with  both  Dowson-Higginson  (Do.Hi.)  model,  especially  with  the 
modified one.

4 Numerical results. A first comparative case.
Equations (4)-(6) have been written down for a 3-dimensional device in unsteady situation. If 
the gap does not depend on the time and if boundary conditions are constant in time, the 
solution of this equation tends to a function which does not rely on time and satisfies the 
steady state Reynolds equation. From now on, for comparison with other authors for which 
the pressure is the main unknown, steady state solution of (6)  will be computed. 

As a first  comparative test case, the parabolic slider (the infinitely long device assumption 
with the notation x  instead of  x1) already proposed by  Vijayaraghavan and Keith  [15] and 
Sahlin  and coauthors   [54] is used.  Comparisons between the present  compressible model , 
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Elrod-Adams (E.A.) model, Dowson-Higginson (Do.Hi.) model for various bulk modulus and 
cavitation pressure are given. In this situation (moderate loading, fully flooded situation), the 
coincidence of these various models  with the present one is remarkable, both for the pressure 
p and “saturation” or relative density  ρ/ρl    (Figures 5 and 6). The main difference is the 
existence of some “under-pressure” in the cavitated area with the present model.

For the infinitely long device, it is not necessary to solve the Reynolds equation (6) using a 
finite difference or finite element method as for a finite dimensional device (see section 9). 
The second term of the left hand side of the Reynolds compressible equation (6) disappears. 
(the same procedure can be used for equation (16)).  The Reynolds equation becomes  an 
ordinary differential equation of second order (notation x1 is replaced by x). This equation is 
equivalent to a system of two first order differential equations:

dQ
dx

=0 25 a 

Q=−
h x 3 ρ
12 μ

dp
dx


ρhx u
2

25 b 

with the boundary conditions:
          p x= 0= p x=L =Pext= 105  Pa 25 c 

                                             

As boundary conditions are imposed on the pressure the value of the input mass flow Q is not 
known. It is is computed by the following procedure:
The ordinary  differential  equation  (25b)  is  solved using  a  shooting  method:  the  pressure 
boundary condition is applied at one of the boundary namely x=L and the value of  the input 
mass  flow Q is  adjusted  so  that  the  other  boundary  condition  at  x=0 is  satisfied.  Usual 
algorithms like Runge-Kutta 4 with 5000 nodes are used.

From the knowledge of p (or equivalently ρ or α), it is easy to compute the (relative) density 
 ρ/ρl, the friction F on the moving surface and  the load W:

F=∫
0

L

−
μ  x ρ x u

hx 
−

h x 
2

dp
dx

dx, W=∫
0

L

 p−Pext dx 26                                                 

It should be noticed  that the formula used for the computation of the friction is valid on the 
whole surface of the device and no assumption has to be made on the value of the friction 
over the cavitated area.

Both Elrod-Adams  and Dowson-Higginson model  used a dimensionless  density which is 
given by the ratio  ρ/ρl in  the non cavitated  area and “local  proportion” of fluid  θ in  the 
cavitation area. It can be compared with the ratio ρ/ρl of the present model  (figure 6) and its 
minimum value is given in column 4 of Table 1.

Data are [55]: (Figure 4) 
u= 4.57 m/s     0<x< L=0.0762 m      µl= 0.039 Pa.s

hmax= 5.08 10-5 m         hmin=2.54 10-5 m 

The present model is associated with the following additional fluid properties (The influence 
of the values of these parameters will be studied in the next section):

ρl=950 kg/m3      cl= 1600 m/s       rρ=2 10-5       rµ=0.017       rc=0.22
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Operational parameters for the various models are given in Table 1. The first row gives the 
result obtained using the E.A. algorithm with the value of β used in [13,14]. In the second row 
the value of  β deduced from Equation (21) is used. The two following rows are concerned 
with the Dowson-Higginson. model of compressibility and the data issued from [55]. Two 
different values of the saturation pressure 1 bar (as in [55]) or 0.6 bar are used. The last one is 
exactly the pressure Pml deduced from equation (10) using the previous choice for ρl, cl, rρ, rc. 
For the last  row which is  concerned with the present  model,  both Dukler  and McAdams 
mixture viscosity models give the same values.

The two values for the friction mentioned for each row are obtained for the first figure by the 
computation of:

−∫
à

L

h
dp
dx

dx−∫
0

L
uμ
h

dx                                                                      (27)

This  is  the  classical  formula, assuming  it  is  valid  on  the  whole  surface  of  the  device  , 
including the cavitation area.
For  the  second  figure  zero  friction  in  assumed  in  the  cavitated  area  so  that  friction  is 
computed by: 

−∫
à

L

h
dp
dx

dx−∫
0

L
uμ
h

Ψ  p dx 28 a 

with
Ψ  p=1 if p>Pcav and Ψ  p =0 if p<Pcav 28b 

          

For  the  present  model,  the  friction  is  computed  directly  from (26)  as  the  theory  is  valid 
uniformly in the whole domain so that only one figure is given.

The discrepancy between the two first rows in Table 1 has already been observed by Sahlin 
and co-authors as the good correlation with the Do.Hi. model. The relative density reaches 
1.08 (Figure 6) for β= 0.069 GPa as a consequence of a too small value of the bulk modulus. 
For all other computations the relative saturation does not not exceed 1.001 so supporting the 
fact that incompressibility is reached. Concerning the friction, these results clearly show that 
it must be computed on the whole surface of the device and not only on the non cavitated area 
if J.F.O. or Do.Hi. models are used.
With the exception of the case  β=0.069 GPa, the coincidence of all pressure and saturation 
curves in the non cavitated area is remarkable (most of the curves are superimposed in Figures 
5  and  6).  Consequences  of  a  change  of  the  cavitation  value  are  mainly  limited  to  the 
behaviour of the pressure in the cavitation area.
A close examination of the pressure curve (Figure 5) for the present model shows that the 
minimum value of the pressure is around 0.3 bar, less than saturation pressure Pml.

5 Effects  of  the mixture  viscosity  model   and vapor/liquid  properties:  A parametric 
study.

Physical parameters  describing  the  properties  of  lubricant  in  the  pure  liquid  and in  pure 
vapour situations can cover a wide range of values [59]. In this section, a lot of computations 
have  been  conducted,  for  various  parameters  rρ,  rµ and  rc.    The  choice  of  the  range  of 
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parameters for the computations has been done so that changes of behaviour appear in the 
results in Tables 2 to 5. The computed load and the minimal value of the relative saturation 
are given in Tables 2, 3 and 4.
To make the discussion clearer, we choose to present the results in real dimensional variables 
starting from a fluid with ρl=950 kg/m3 ,  µl= 0.039 Pa.s  and cl=1600 m/s. Geometrical data 
and velocity are the same as in section 4. Other values could not change quantitatively the 
results.  As  mentioned  before,  after  suitable  dimensionless  procedure,  only  the  ratio  of 
viscosities, velocities and density are of interest, see Equation (16), so that these 3 parameters 
will be considered. Moreover results with Dukler and Mc Adams assumptions are compared.

The main feature in all tables and for both models is that results are nearly identical with the 
exception of a sudden decrease of the load for large values of rc and rρ.. This effect can be 
explained by computing the saturation pressure Pml from equation (10b). The decrease of the 
load occurs when the pressure Pml is greater than the inlet pressure (1 bar) so that a local non 
saturated area exists at the entrance of the device. If the difference between Pml and Pext is not 
large,  the  pressure  can  increase  in  this  area  and  the  effect  of  this  non  saturated  area  is 
negligible. If  the difference becomes too large, the pressure cannot increase sufficiently and it 
is  exactly  as   if  starvation  appears.  This  induces  a  dramatic  decrease  of  the  load.  This 
behaviour is illustrated in Figures 7 and 8 which correspond to the row rc=0.25 from Table 2. 
Pressure  curves  for  rρ= 4  10-5  and  rρ= 5  10-5  (respectively  rρ= 7  10-5  and  rρ= 8  10-5)  are 
superimposed. This is also the case for the density curves for rρ= 4 10-5and  rρ= 5 10-5.

Let us now consider the influence of the mixture viscosity model. For rµ>10-2 results are the 
same for both mixture viscosity models (Table 2). However, when this ratio decreases, the 
behaviour of the two models is very different. The results with Dukler’s model are the same 
for any value of rµ while  those using the Mc Adams model heavily relies on the rµ ratio 
(Tables 3 and 4). To explain the difference between the two mixture viscosity models, it can 
be pointed out that for small  rρ and rµ values, Equations (13) and (14) can be approximated by

                               

μ≈μl1−α  Dukler model 29

μ ≈
μl

α
1−α

r ρ

r μ

1

McAdams model 30 

Then for small values of the ratio rρ and rµ, the mixture viscosity in the first model is nearly 
independent from rµ and rρ. For the second model, the viscosity heavily depends on the ratio 
rρ/rµ.  For the values of  α far from 1, the viscosity in the first model has the same order of 
magnitude than µl   while for the Mc Adams model it can reach values much lower if rρ/rµ is 
large.

As a conclusion, it seems from the present computation that the influence of the vapour/liquid 
parameters is mainly related to the vapour/liquid transition pressure and then to the possible 
appearance  of  starvation.  In  that  case,  the  Mc  Adams  model  amplifies  the  variation  of 
pressure compared  to the Dukler model.

6 Light  loading
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It has been seen in Section 4 that for moderately loaded bearing, the solution of the present is 
close to the solution of J.F.O. or E.A. models if the cavitation pressure in J.F.O. /E.A. model  
is specified equal to the Pml value and the bulk modulus is chosen according to equation (21). 
It  will  be  seen  here  that  it  is  not  the  case  for  lightly  loaded  bearing  for  which  large 
discrepancies can exist, depending on the values of the internal parameters and the choice of 
the mixture viscosity model.

The following input data are chosen in this section:

hmax= 10-4 m     hmin= 0.8 10-4m    l =0.314      s=5m/s      pext= 1 bar,

with the fluid characteristics:

ρl= 900 kg/m3       cl=1450 m/s.

The E.A. algorithm is used first to compute load, maximal pressure, and minimal saturation 
(Table 6). A value of β  and a cavitation pressure are needed: The  value of  β computed from 
equation (21) is  1.89 GPa. Three values of Pcav: 0.08 bar, 0.37 bar and 0.91 bar are used, 
Results are given in Table 6. 

Solution for the full compressible fluid model is computed for three situations. In each case, 
the parameters are chosen such that the pressure Pml obtained from equation (10) is the same 
as the pressure Pcav used in the previous  E.A. computation:

rρ= 6 10-5    and   rc =0.05   for   Pcav =0.08 bar
rρ = 8 10-5   and   rc = 0.1   for   Pcav = 0.37 bar
rρ = 5 10-5    and   rc = 0.2    for   Pcav=0.91 bar

Moreover, both Dukler and Mac Adams models are considered with three values of rµ: 10-4, 
105  and  10-6. Results are summarized in Table 7. 
The difference between the E.A solution and the one for the present model increases with Pcav. 
The main reason is that under-pressures allowed by the present model are more important if 
Pcav is large. Moreover, the difference for the maximal pressure is smaller than the one for the 
load.  So it  can be inferred that  the difference  is  mainly  due to  what  happens around the 
“cavitation area”.
 Solutions with the Mc Adams model for rµ greater than 10-4 and with the Dukler model for 
any rµ  are  close  to   the  E.A.  solution.  The solutions  with  the  Dukler  model  are  always 
independent from rµ (computations from rµ=10-2 to rµ=10-8 always give the same result) while 
pressure and load for the Mac Adams model decrease like rµ. This kind of phenomenon has 
already been observed in Section 5. 
For the present model, it can be observed in Figures 9 and 10 that the cavitation area (relative 
saturation less than 1) increases with Pml and with the decrease of rµ. Moreover, in this aera, 
the pressure is roughly equal to half of the saturation pressure Pcav. This explains the evolution 
of the load with Pcav and rµ. It should be noted also that the increase of the cavitation area is 
linked with an increase of the relative saturation:  For Pcav =0.91 bar and rµ =10-6, half of the 
device cavitates, being however near full of fluid.
The computation  of  the  friction  using  (26)  shows that  it  is  constant  for  all  computation, 
independent from the model, from rµ and Pcav .
As  a  conclusion,  the  choice  of  the  mixture  viscosity  model  is  of  primary  importance. 
Comparing with the Mc Adams model, the assumption  p> Pcav included in the E.A. models 
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can lead to important errors (60%)  for small rµ  (rµ >10-4) even with “optimal” choices for Pcav 

=Pml and β computed from (21).

7 Moderate loading

In the previous  sections,  we essentially  focussed on what  happens around the  “cavitation 
region“. In this section, we compare the E.A. and Do.Hi. solutions with that of the present 
model in a situation in which high pressures exist.

Let us  consider  now  a  twin  parabolic  slider  (Figure  11)  as  in  [55].  The  upper  surface 
combines 3 flat areas of length L11,L12, L13 and two parabolas of length L31 and L32. The gap 
for the flat surfaces is denoted hmax and the minimum gap hmin.   It can allow both starvation 
and inter-asperity  cavitation,  assuming the validity  of the present cavitation model  on the 
whole surface of the device as it is a common practice for usual cavitation models.  Let us 
recall that previous studies [60] demonstrate the sensitivity of the results with respect to the 
cavitation models for rough surfaces. This is due to the succession of rupture /reformation free 
boundaries appearing in this situation.
Following data is used:

rµ = 0.017     rc =0.05     rρ =5 10-5      ρl=992kg/m3      µl= 60 10-5 Pa.s       cl= 1450 m/s

hmin=10-6m      hmax= 4 10-6 m       s =8m/s      L31=L32=0.5m      L11=L12=L13=0.1m

The corresponding cavitation pressure is Pcav = 0.07 bar which is chosen for the E.A. model 
although at this level of pressure other choices like 0 or 1 bar do not  induce any  differences. 
Operational parameters values for the various models are given in Table 8.
 The present model (both Mc Adams and Dukler assumptions give the same results ) gives 
values very close to the one of the Do.Hi. model  and  of the E. A. one for β= 2.2 109  GPa. 
From the  results  of  Table  8,  the  importance  of  the  choice  of   β in  the  E.A.  model  is 
noteworthy: In this situation, it is necessary to choose β greater than 102 GPa to get the J.F.O. 
incompressible case while a choice smaller than the ”optimal choice”  β=2.2GPa  computed 
from (21) induces a dramatic decrease of the load.  This is the result of the elasticity of the 
fluid which becomes more and more incompressible as β increases. 
The elasticity of the fluid linked to the compressibility properties is not the only property to 
take into account to discuss the results of Table(8). In figure(3), the pressure density curve for 
the present model is above the one of the Do-Hi model and the last one is also above those of 
the E.A. incompressible case (β= 22 109 GPa) which is superimposed with  the horizontal line. 
We can then expect that pressure and load for the E.A incompressible case are higher than 
those of the Do-Hi case and of the present model. This is not what appears in Table 8. The 
explanation is that the cavitation areas for the various models are different as in figure (13). 
The percentage of the surface corresponding to the non cavitated area is given in the last 
column of Table (8). As a consequence the solution of the Reynolds equation for the E.A. 
incompressible case (3th or 4th row) is computed on a domain which is smaller than the one 
for the present model or the Do-Hi model . In spite of the compressibility effect , load and 
maximal pressure for the incompressible model are smaller than for the two other models.
 
8 Starvation
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Starvation at the inlet is often related to the fact that inlet flows are incomplete due to the 
geometry of the supply device or an insufficient input mass flow value. It is often associated 
with mixed lubrication. However it can be introduced also in the case of pure hydrodynamic 
solution [61,62,63]. In the J.F.O. model as in the present one, it is easy to take into account 
input flow rate Q as a input data and so to study a starved situation. A decrease of this value 
induces a starvation at the inlet. In the following results (Table 9 and Figures 12), input flow 
rate is chosen as 4.84 10-6 m2 /s, smaller than all the flow rate values in Table 8.  Three regions 
of cavitation can be observed. The first one at the entrance, the second one between the 2 
asperities and the last one before the outlet.  
It should first be noted that the results for the present model and the E.A. one with β=2.2 109 

GPa are nearly identical and the curves are superimposed. Cavitation boundaries for these two 
models and the Dowson-Higginson one are nearly identical and the difference between these 
3 models is very limited. 
Contrary to the fully flooded case, and despite the fact that the cavitation regions are also 
different, the solutions for  the various models are in accordance with the pressure density 
curves of figure (3).  
 As it appears from Table 9 and Figure 12, differences between the other models are larger 
than in the previous fully flooded situation. Comparing with Table (8), the most intriguing 
aspect is that the decrease of the load is very different according to the model.  For the present 
model, the ratio of decrease is 74%, while for β= 2.2 1010  Pa it is 63% and for β= 2.2 1011 Pa 
it is only 14%. This is the consequence of the different values for Q in the fully flooded 
situation: The relative decrease of the input flow is much more important for β= 2.2 109 Pa 
than  for  β= 2.2 1011 Pa. This explains why the incompressible solution now becomes greater 
than other  solutions,  contrary  to  the  fully  flooded case.   The combined sensitivity  of  the 
solution relative to the bulk parameter and the flow rate is then exacerbated.  When pressure 
built up occurs from a cavitated region, the differences between the models are larger than in 
the fully flooded solution. Such behaviour has already been observed in [60] and [64] using 
classical cavitation models.

9 A 2-dimensional example.

An interesting feature of the present model is the possibility of using a very simple algorithm 
to obtain the solution of the Reynolds equation (16) without any specific process for maintain 
the pressure at a value higher than a one given as a data (cavitation pressure).

Starting  from an initial  value  for  α satisfying the  given boundary conditions,  a  sequence 
(αn+1) satisfying the (linear) problem is computed:
 
 

 r ρ−1  ℜ [∂∂X 1

 H3 x 
Qα n 

12 μ∗α n 

∂ α n+1

∂ X1

 L1/L2 
2∂

∂ X2

H3  x 
Q αn 

12 μ∗α n 

∂ α n+1

∂ X 2

]
=

1
2

S
∂

∂X1

 H  x  α n r ρ1−αn  

31  

Solution of  this  linear  problem can be made by using finite  difference or finite  elements 
discretization.   As an example, let us consider (half) a journal bearing like the one studied in 
[47]  in  which  both  pressure  and  temperature   maps  have  been  obtained.  The  previous 
algorithm has been used with 120 000 triangles P1-finite elements.
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Input data from [47] are:

length=0.02m     Radius =0.05m      Eccentricity (computed to get  500N load)=0.735
ρl=900Kg/m3      µl =0.03 Pa.s      Supply pressure =2 bar

Boundary pressure for the open-side = 1 bar and the relative velocity = 5m/s.
Supplementary data are chosen as:

ρv=0.018, µv =0.00003,   cv =333 m/s,    cl =1450m/s

So that the value of the saturation pressure Pml is 0.51 bar (Choice of other values of  ρv and 
cv leading to saturation values from 0.35 to 0.65 does not change the results).

Results (Figure 13 middle) are compared with the experimental results (Figure 13  top) of [47] 
and  with  the  results  of  a  finite  difference  computation  with  the  J.F.O.  model  using  the 
algorithm issued from [65] (Figure 13 bottom).
Obviously  the  three  solutions  are  very  close  in  the  convergent  part  of  the  bearing.  The 
maximum pressure is the same 12.5 /13 bar. In the divergent region, solutions of the J.F.O. 
model and of the present one are also very close. The improvement is that we are able with 
the new model  to gain precise information on what happens in the mixture-cavitation region . 
The computed minimal pressure is 0.2 bar (0.3 bar below the saturation pressure), the same 
value than the experimental  one.  However,  the mixture–cavitation  area in  the new model 
covers  an important part of the surface (even if a saturation pressure of 0.3 bar is taken as 
input data) contrary to what appears from experimental measurements. Moreover the location 
of the minimal pressure (marked by a cross) is not located at  the same place.  A possible 
explanation relies on the values chosen for the supplementary data although as mentioned 
before a wide range of saturation pressure has been tested with only small variations for the 
results. A more plausible explanation is that the present model does not take into account the 
air which enters the bearing as the pressure in the divergent part is very low with regard to the 
external pressure. Other phenomena such as gas diffusion [28] out and back into the lubricant 
or the  reverse flow [29] which have been observed even in submerged bearing could also 
have some influences in the extent of the cavitation area.  At last thermal effects could also 
play a role to explain this difference. 
However,  influence  of  the  air  entrance  in  the  bearing  does  not  seem  to  be  the  leading 
phenomenon in this situation as the overall pressure repartition above saturation pressure is 
not modified.  This gives confidence to use the present model or the J.F.O./E.A. model in 
practical situations.

10 Conclusion

Although the J.F.O./E.A. model  is widely used, it has never been possible so far to give a 
three dimensional (Navier)-Stokes model such that J.F.O/E.A could be considered as its thin 
film counterpart.
It has been described how a film thin Reynolds equation retaining the main features of the 
J.F.O./E.A. model  can be  obtained from of a full compressible (Navier)-Stokes model The 
model assumes that the lubricant can be described in an unified manner in both cavitated and 
non cavitated regions as an “equivalent” homogeneous compressible fluid. No geometrical 
assumptions on the shape of the three dimensional cavitation region is required.
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The present model can be considered also as an approximation of  the J.F.O/E.A model by 
using  a  smooth  pressure-density  relation  (or  compressibility  law)  valid  on  the  whole 
lubricated surface.
 Moreover values of the parameters involved in the E.A algorithm like saturation pressure and 
bulk modulus can be precisely obtained. 
The possible appearance of ‘negative pressure” (subcavitation pressure) is naturally included 
in the present model together with the variation of the viscosity. This is the main difference 
with the usual JFO/E.A. model which can become of importance especially for light loading 
situations.  The choice of the viscosity model in the mixture can impact the performances of 
the devices.
The unified treatment of the cavitating and non cavitating regions of the flow shows that it is 
not necessary to consider a specific algorithm to cope with the cavitation. Usual algorithms 
can be used. 
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Nomenclature 

cv,cl ,cf     velocity of the sound in the pure vapour, pure liquid , mixture regime
cmin  parameter in the pressure-density law
h  (H)   gap (non dimensional)
l      characteristic length  
h (H)    gap (non dimensional)
p (p*)    pressure (non dimensional)
rc, rρ, rη  ratio of velocity, density and viscosity for pure vapour/pure liquid values
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x (X)   coordinate (non dimensional)
u (S)    velocity component in the x-direction ( non dimensional)
C1, C2, C3   parameters in the pressure-density law
F friction force
Q  mass flow
L1,L2  characteristic lengths
L11,L12,L13,L31,L32    geometrical parameters for the bearing
M mass volume fraction of the vapor
Pext    boundary pressure
Pvm, (Pml =Psat) wet point pressure, (bubble point pressure)
Pcav  “cavitation pressure” for JFO- E. A. models
R non dimensional number
U (S)   velocity vector (non dimensional)
V    characteristic value of the velocity
W  load
α volume fraction of the vapor (generalized following equation(8b))
β  bulk modulus in the Elrod-Adams model
µ, µl, µv   viscosity, viscosity of the liquid phase, viscosity of the vapour phase
ρ, ρl , ρv    density, density of the liquid phase, density of the vapour phase
ρc     density parameter in the Elrod Adams model
ρ*    non dimensional density
λ        auxiliary function in the Navier Stokes equation (second Lamé coefficient)
θ       relative density (θ =ρ/ρl) (also called relative saturation)

Figure captions

Fig 1 : example of geometry
Fig.2 :Saturation pressure laws  A comparison between cavitation models. Low pressure
Fig.3 :Saturation pressure laws  A comparison between cavitation models. High pressure
Fig 4  Model gap (sections 4-5-6)
Fig.5 : A comparison  between models. Pressure curves
Fig.6 : A comparison  between models. Relative density curves
Fig.7: Dukler mixture viscosity model. Influence of rρ ratio. Pressure curves
Fig.8 : Dukler mixture viscosity model. Influence of rρ  ratio. Relative density curves
Fig 9: Light loading. Influence of cavitation parameters. Comparison between various models. 
Relative density curves. 
Fig  10:  Light  loading.  Influence  of  cavitation  parameters.  Comparison  between  various 
models. Pressure curves
Fig 11  Model gap (sections 7-8)
Fig 12 : Starved situation. A comparison between various models. Pressure curves 
Fig 13 : A comparison of the pressure field (finite bearing): Experimental values (top) present 
model (middle ) and JFO model (bottom). Pressure values in Mpa.

Table captions

Table 1: Comparison between various models: Values of operational parameters
Table 2: Value of mixture-liquid transition pressure. Influence of internal parameters
Table 3 : Load and minimal saturation values as a function of rc  and rρ

( Dukler model  rµ=10-2, 10-3,10-4,10-5, Mc Adams model , rµ =10-2)
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Table 4 : Load and minimal saturation values as a function of rρ  and rc. 
( Mc Adams model , rµ =10-4)
Table 5 : Load and minimal saturation values as a function of rρ  and rc.. 
( Mc Adams model , rµ =10-5)
Table  6:  Comparison  between  various  models:  Values  of  operational  parameters.  Fully 
flooded situation
Table  7:  Comparison  between  various  models:  Values  of  operational  parameters.  Starved 
situation
Table 8: Light loading. Influence of cavitation parameters: Values of operational parameters 
for E. A. model
Table 9: Light loading. Influence of cavitation parameters: Values of operational parameters 
New model.

Figure 1: example of geometry.
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Figure 2: Saturation pressure laws  A comparison  between models. Low pressure.
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Figure 3: Saturation pressure laws  A comparison  between models. High pressure.
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Figure 4: Model gap.
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Figure5 : A comparison  between models: Pressure curves.

27



Figure 6: A comparison  between models. Saturation curves.
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Figure 7 : Dukler mixture viscosity model . Influence of rρ ratio. Pressure curves.
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Figure 8: Dukler mixture viscosity model. Influence of rρ  ratio. Saturation curves.
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Figure 9: Light  loading.  Influence of cavitation parameters .  Comparison between various 
models. Saturation curves. 
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Figure 10: Light loading. Influence of cavitation parameters.  Comparison between various 
models. Pressure curves. 
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Figure 11: Double slider geometry.
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Figure 12: Starved situation. A comparison between various models. Pressure curves .
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Figure 13:  A comparison of  the  pressure field  (finite  bearing):  Experimental  values  (top) 
present model (middle ) and J.F.O. model (bottom). Pressure values in Mpa.
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model Load
(N/m)

Maximum
 pressure
 (105 Pa )

Minimum 
saturation

Flow
(m2/s)

Friction
(N/m)

E.A.   β=0.069  GPa 
Pcav=105 Pa

1.00 10 5 38 0.58 6.8 10 -5 445/337

E.A.  β=2.4 GPa
Pcav=105 Pa

0.92 10 5 37 0.57 6.5 10 -5 445/327

Do.Hi.  
Pcav=105 Pa

0.93   10 5 36.9 0.56 6.55 10 -5 445/327

Do.Hi. 
Pcav=0.6105 Pa

0.90 10 5 36.5 0.56 6.5 10 -5 445/327

Present model 0.90 10 5 36.8 0.58 6.5 10 -5 445

Table 1: Comparison between various models: Values of operational parameters.

Load (Newton/m)
/minimal saturation

rρ = 4 10-5 rρ =5 10-5 rρ = 6 10-5 rρ = 7 10-5 rρ = 8 10-5

rc =0.05 0.90 10 5 /0.57 0.89 10 5 /0.57 0.89 10 5 /0.57 0.89 10 5 /0.57 0.89 10 5 /0.57

rc =0.1 0.90 10 5 /0.57 0.90 10 5 /0.57 0.90 10 5 /0.57 0.90 10 5 /0.57 0.90 10 5 /0.57

rc =0.22 1.02 10 5  /0.57 1.02 10  5 /0.57 1.02 10 5  /0.57 1.02 10 5  /0.57 1.02 10 5   /0.57

rc =0.225 1.02 10 5  /0.57 1.02 10 5  /0.57 1.02 10 5  /0.57 1.02 10 5  /0.57
0.02 105/0.43

rc =0.25 1.02 10 5  /0.57 1.02 10 5  /0.57 0.77.10 5  /0.56 0.02.10 5  /0.23 0.02.10 5  /0.1

Table 2: Load and minimal saturation values as a function of rρ and rc ( Dukler model  rµ =10-2, 
10-3,10-4,10-5, Mc Adams model , rµ =10-2).

Load(N/m)/minimal 
saturation

rρ = 4 10-5 rρ =5 10-5 rρ = 6 10-5 rρ = 7 10-5 rρ = 8 10-5

rc =0.05 0.89 10 5  /0.61 0.90 10 5  /0.62 0.90 10 5  /0.63 0.90 10 5  /0.65 0.90 10 5  /0.66

rc =0.01 0.89 10 5  /0.61 0.90 10 5  /0.62 0.90 10 5  /0.63 0.90 10 5  /0.65 0.90 10 5  /0.66

rc =0.22 1.02 10 5  /0.66 0.92 10 5   /0.69 0.90 10 5   /0.71 0.71 10 5   /0.69 0.02 10 5   /0.52

rc =0.225 0.92 10 5   /0.66 0.92 10 5   /0.69 0.89 10 5   /0.71 0.54 10 5   /0.67 0.02 10 5   /0.42

rc =0.25 0.92 10 5   /0.68 0.86 10 5   /0.69 0.02 10 5   /0.53 0.02 10 5   /0.23 0.02 10 5   /0.1

Table 3 : Load and minimal saturation values as a function of rρ and rc. (Mc Adams model, rµ 

=10-4).
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Load  (N/m) 
/minimal 
saturation

rρ = 4 10-5 rρ =5 10-5 rρ =6 10-5 rρ = 7 10-5 rρ = 8 10-5

rc =0.05 0.89 10 5  /0.64 0.89 10 5  /0.66 0.89 10 5  /0.68 0.8910 5  /0.69 0.89 10 5  /0.71

rc =0.1 0.89 10 5  /0.71 0.88 10 5  /0.74 0.87 10 5  /0.78 0.86 10 5  /0.80 0.84 10 5  /0.82

rc =0.22 0.84 10 5   /0.83 0.79 10 5   /0.87 0.57 10 5  /0.88 0.02 10 5   /0.78 0.02 10 5   /0.53

rc =0.225 0.84 10 5   /0.84 0.79 10 5   /0.87 0.39 10 5  /0.86 0.02 10 5  /0.70 0.02 10 5   /0.42

rc =0.25 0.80 10 5   /0.85 0.24 10 5   /0.83 0.02 10 5  /0.54 0.02 10 5  /0.23 0.02 10 5  /0.1

Table 4 : Load and minimal saturation values as a function of rρ and rc (Mc Adams model, rµ 

=10-5).

Pml (bar) rρ=4 10-5 rρ =5 10-5 rρ =6 10-5 rρ =7 10-5 rρ =8 10-5

rc=0.05 0.07 0.08 0.1 0.11 0.12
rc l=0.1 0.25 0.31 0.36 0.42 0.48
rc =0.22 0.95 1.17 1.38 1.59 1.79
rc =0.225 1.19 1.46 1.73 1.99 2.25
rc =0.25 1.46 1.79 2.12 2.44 2.75

Table 5: Value of mixture-liquid transition pressure. Influence of internal parameters.

Pcav =0.08bar Pcav = 0.37 bar Pcav =0.91 bar
W=7.21 Pmax=7.71
θmin=0.84

W=7.75 Pmax=7.80
θmin=0.84

W=8.77 Pmax=7.96
θmin=0.86

Table 6: Light loading. Influence of cavitation parameters: Values of operational parameters 
load W (n/m) , maximum pressure (Bar), and minimal saturation for E. A. model.

Pcav =0.08
Dukler 
model

Pcav =0.08 
Mc  Adams 
model

Pcav =0.37 
Dukler 
model

Pcav = 0.37 
Mc  Adams 
model

Pcav =0.91 
Dukler 
model

Pcav =0.91 
Mc  Adams 
model

rµ = 10-4 W=7.16
Pmax=7.71
Pmin=0.036
θmin=0.86

W=7.16
Pmax=7.71
Pmin=0.036
θmin=0.86

W=7.50
Pmax=7.77 
Pmin=0.18
θmin=0.86

W=7.48
Pmax=7.6
Pmin=0.19
θmin=0.88

W=8.16
Pmax=7.88
Pmin=0.48
θmin=0.85

W=8.10
Pmax=7.88
Pmin=0.49
θmin=0.89

rµ = 10-5 W=7.16
Pmax=7.71
Pmin=0.036
θmin=0.86

W=7.13
Pmax=7.70
Pmin=0.036
θmin=0.89

W=7.50
Pmax=7.77
Pmin=0.18
 θmin=0.86

W=.6.71
Pmax=7.51
Pmin=0.20
θmin=0.94

W=8.16
Pmax=7.88
Pmin=0.48
θmin=0.85

W=6.89
Pmax=7.42
Pmin=0.53
θmin=0.95

rµ = 10-6 W=7.16
Pmax=7.71
Pmin=0.036
θmin=0.86

W=6.08
Pmax=7.34
Pmin=0.039
θmin=0.95

W=7.50
Pmax=7.77 
Pmin=0.18
θmin=0.86

W=4.90
Pmax=6.73
Pmin=0.23
θmin=0.99

W=8.16
Pmax=7.88
Pmin=0.48
θmin=0.85

W=5.34
Pmax=6.67
Pmin=0.60
θmin=0.99

Table 7: Light loading. Influence of cavitation parameters: Values of operational parameters 
load W (n/m) , maximum  and minimum pressure (Bar), and minimal saturation. New model.
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model Load 
(N/m)

Max 
pressure
GPa

Minimum
 density

Flow rate
(m2/s)

Friction
N/m

Percentage  of 
non  cavitated 
area

E.A  β=  0.22 
GPa 

139 106 0.256 0.80 12.8  10-6 3463/3249 0.84

E.A. β= 2.2 GPa 218 106 0.539 0.36 5.71   10-6 4062/3293 0.68

E.A  β= 22  GPa 197 106 0.509 0.31 4.94 10-6 4103 /3157 0.64

Ε.Α. β=220 GPa 194 106 0.505 0.31 4.88 10-6 4103 /3140 0.64
Present model 217 106 0.539 0.35 5.66 10-6 4069 0.68
Do.Hi.   model 210 106 0.530 0.33 5.41 10-6 4089/3260 0.67

Table  8:  Comparison  between  various  models:  Values  of  operational  parameters.  Fully 
flooded situation.

model Load
(N/m)

Max 
pressure
GPA

Minimum 
density

Flow rate
(m2/s)

Friction
(N/m)

Percentage  of 
non  cavitated 
area

E.A. β= 2.2 109 57 106 0.249 0.30 4.84   10-6 3386/2109 0.32

E.A  β= 2.2 1010 146 106 0.437 0.30 4.84   10-6 3850/2788 0.53

Ε.Α. β= 2.2 1011 168 106 0.474 0.30 4.84   10-6 3987 /2972 0.59
Present model 57 106 0.248 0.30 4.84   10-6 3386 0.32
Do.Hi.   model 61 106 0.261 0.30 4.84   10-6 3403/1851 0.33

Table  9:  Comparison  between  various  models:  Values  of  operational  parameters.  Starved 
situation.
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