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ABSTRACT

In this paper, an asymptotic expansion is used to derive a description of Phan-Tien Tanner / Oldroyd-B flows
in the thin film situation without the classical “Upper Convective Maxwell” assumption. We begin with a short
presentation of the Phan-Thien Tanner / Oldroyd-B models which introduce viscoelastic effects in a solute-solvant
mixture. The three dimensional flow is described using five parameters, namelyDe the Deborah number (or the
relaxation parameterλ), the viscosity ratio r, the bulk fluid viscosityη, the material slip parameter a related to the
“convected derivative” and an elongation numberκ. Then we focus on the thin film assumption and the related
asymptotic analysis that allows us to derive a reduced model. A perturbation procedure for “not too small” values
of κ allows us to obtain further results such as an asymptotic “effective viscosity / shear rate” law which appears to
be a perturbation of the double Rabinowisch model whose parameters are completely defined by those of the original
three dimensional model. And last a numerical procedure is proposed based on a penalized Uzawa method, to
compute the corresponding solution. This algorithm can also be used for any generalized double Newtonian shear
thinning Carreau law.
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Nomenclature
H Order of magnitude of the gap
L Order of magnitude of the bearing length
U Order of magnitude of the shear velocity
L1, L2 Dimensions of the contact area
H (h) Gap (dimensionless)
ε = H /L Film thickness ratio
Re Reynolds number
De (D̃e= De/ε) Deborah number (rescaled)
κ (K = κ/r, K̃ = K/ε) Elongation number (rescaled)
b, c, n, G Parameters in Carreau-Yosida law
a Material slip parameter in the time derivative
r Ratio of viscosities or retardation number
λ Relaxation time
ρ Density
δ Convergence parameters in the algorithm
δx1, δx2 Discretization parameters
s Dimensionless velocity atz= 0 in the directionx1

t⋆ (t) Time (dimensionless)
p⋆ (p) Pressure (dimensionless)
q0 Input mass flux value
U⋆ = (u⋆

1,u
⋆
2,w

⋆) (U = (u1,u2,w)) Velocity (dimensionless)
x⋆ = (x⋆

1,x
⋆
2), (x = (x1,x2)) Coordinates on the shearing surface (dimensionless)

z⋆ (z) Orthogonal coordinate (dimensionless)
D(U) = 1

2

(
∇U+ T(∇U)

)
Symmetric parts of the velocity gradient

W(U) = 1
2

(
∇U− T(∇U)

)
Skew-symmetric parts of the velocity gradient

γ̇ (α̇, β̇) Shear rate (dimensionless 1D -for long devices- or 2D)
η1, η2, ηel., ηvisc., ηeff, η Viscosities
σ⋆, σ⋆

el., σ⋆
visc. (σ, σel., σvisc.) Stress tensor (dimensionless)

τ Shear stress
ω Contact area

1 Introduction
Many authors have investigated the non-Newtonian effects of fluids based upon various rheological models in lubri-

cation [1]. In most of them, the main keypoint relies on the choice of the relationship between the effective viscosityηeff

and the shear ratėγ (or the effective viscosityηeff and the shear stressτ). For mineral oil / polymer blends this relation
shows a shear thinning effect (decreasing slope) of the power law type and two plateaux (corresponding to either small stress
values or high stress values). This behavior is known as double Newtonian shear thinning. As for full 3D non-Newtonian
Navier-Stokes fluids [2,3] Carreau-Yasuda models are oftenused:

ηeff(γ̇) = η2 +
η1−η2

(
1+
(
bγ̇
)c
) 1−n

c

or ηeff(τ) = η2 +
η1−η2

(
1+
(
τ/G

)c
) 1−n

c

(1)

Values of the parameters are often obtained by fitting experimental data [4–8] although specific values are sometimes ob-
tained using ad-hoc physical reasons (likec = 2/3, n = 1/3 for pseudo-plastic systems in Cross [9]). It has been also
observed that some values of the parameters allow us to obtain a one dimensional Reynolds equation (Ellis model:η2 = 0,
c= 1−n in [10], double Rabinowisch model,c= 2, n = −1 in [4], double Ferry modelc= 1, n = 0 [4], approximate single
Carreau modelη2 = 0,c= 2 in [11], single Rabinowisch model in [12]), or even two dimensional Reynolds equation with the
single Rabinowisch model [6,13]. However, only two of them are able to deal with the double shear thinning feature. Let us
mention also that a Reynolds-type equation is obtained for an Eyring fluid by T. F. Conry, S. Wang and C. Cusano [14]. The
derivation of a generalized Reynolds equation is of particular interest as it prevents from performing additional integrations
across the film, thus limiting computational costs. To deal with that difficulty, approximate 2D Reynolds equations have
been sometimes proposed as in [15] and [16]. A comparison between these two approximations can be found in [17].
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The present paper is concerned with another kind of results which are obtained by using asymptotic methods to derive reduced
models based on the thin film assumption (with or without infinitely long devices assumption) starting from non-Newtonian
Navier-Stokes models (depending on several rheological parameters: the fluid viscosityη, the retardation numberr, the ma-
terial slip parametera, the elongation numberκ, the fluid relaxation timeλ which is directly related to the Deborah number
De). Pioneering works are those of J. Tichy [18], and more recently F. T. Akyildiz and H. Bellout [19], and R. Zhang and
X. K. Li [20]. In the work of J. Tichy [18], the departure pointis the linear Maxwell purely elastic upper convective model
(that corresponds tor = 1, a = 1, κ = 0, see Section 2 for the definition of those rheological parameters) and the Deborah
number De is used as a perturbation parameter from the Newtonian pressurep0 and velocity. In order to keep the greatest
number of terms in the asymptotic equation (including non-Newtonian effects) and avoid singularity for small film thickness
ratioε, the scaling of the stress tensor is not the same for all the terms and De is of the same order of magnitude thanε which
represents the film thickness ratio. Introducing pressurepDe corresponding to the viscoelastic configuration, and pressure
p0 corresponding to the Newtonian configuration, J. Tichy proposes an asymptotic expansion which takes the form (after
dimensionless procedure)pDe = p0 +Dep(c), wherep(c) is a corrective pressure obeying a Reynolds-type equation.In the
work of F. T. Akyildiz and H. Bellout [19], the departure point is the Phan-Thien Tanner (PTT) / Maxwell model (r = 1,
a = 1, κ 6= 0, see Section 2 for the definition of those rheological parameters). In order to balance the effects of the Newto-
nian and nonlinear contributions, it is assumed that the Deborah number and the stress tensor are also of the same order of
magnitude asε (thin film ratio). Collecting the leading terms of all the equations leads to the derivation of a new Reynolds
equation. The difference with the results of J. Tichy is not only due to the nonlinearity in the stresses included in the PTT
model, but also to the fact that the influence of De is now included in the obtained Reynolds equation. A close examination
of these works show that the proposed asymptotic procedure is only valid under the assumptiona = 1, corresponding to the
so-called upper convective Maxwell (UCM) model. This choice allows easier computations but it is not relevant in some
experiments or theoritical works, see for instance [21, 22]in which a valuea = 0.8 is often retained. In that case the whole
asymptotic procedure has to be revisited.

Section 2 is devoted to the presentation of the Phan-Thien Tanner / Oldroyd-B departure model. The asymptotic procedure
is described in Sections 3 and 4. In both sections, as in [18, 19], the Deborah number De is of the same order of magnitude
than the thin film ratio parameter. Unlike J. Tichy’s assumption [18], dimensionless assumptions in our model are the same
for all the components of the stress tensor. This has been rigorously proved in [23] for κ = 0 by G. Bayada, L. Chupin
and B. Grec and the analysis is valid not only for 2D flows but also for 3D flows. Moreover we are able to cope with a
wider range of material slip parameter values (which are related to the objective time derivates): more precisely, our work
includes not only the classical Jaumann one (a = 0) but also any value between lower convected derivatives (a = −1) and
upper convective derivatives (a = 1). Similarly, any combination of viscous and elastic effects can be obtained by defining a
retardation parameter value (denotedr) between 0 and 1.

In Section 3, the elongation numberκ is assumed to be very small (same order of the magnitude ofε) and consequently
disappears in the asymptotic procedure. The resulting constitutive equation reads:

ηeff = η2 +
η1−η2

1+
(
bγ̇
)2 (2)

All parameters can be linked with those of the 3D model by:

b = λ
√

1−a2, η2 = (1− r)η and η1 = η,

where viscosityη can be related to the viscous or elastic contributions of thefluid (see Eq. (10)). Equation (2), together with
the asymptotic hydrodynamic mass flow equation allows us to compute all the characteristics of the flow.

In Section 4, we aim at introducing the elongation effects inthe anisotropic law. To do so, we pick out the same scaling
for the Deborah number and the stress tensor whileκ is assumed to be of order zero with respect to the aspect ratio. The
nonlinear asymptotic system is solved for small values ofκ by using a perturbation procedure as in [18,20]. The constitutive
equation can be written as

ηeff = η2 +
η1−η2

1+
(
bγ̇
)2 + κg(a, r,λ, γ̇). (3)

Numerical results appear in Section 5. In a first simulation,for a non-Newtonian configuration, effective viscosity and
stresses distributions are computed, revealing in particular heterogeneity of the effective viscosity in the 3D flow. Then we
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focus on the influence of the elongation number on the viscoelastic flow. We also discuss the influence of the Deborah
number De: it is proved that the difference between the non-Newtonian pressure and the Newtonian one is proportional to
De2 and not to De as for the UCM model proposed in [18]. We finally provide some information on the way the load does
depend on the rheological properties of the fluid. Additional results are presented in the Appendices: supplementary results
about the influence of rheological parameters appear in Appendix A. It is observed in Appendix B that the classical infinitely
long bearing assumption may be irrelevant due to the non-Newtonian effects, at least in some particular cases of oil supply.
At last a new algorithm is proposed in Appendix C to solve the non Newtonian problem: the idea is to introduce a fixed point
procedure and a penalization of the divergence free equation which acts as an implicit Reynolds equation. This procedure is
based on separate computations in the directions of the flow and in the direction normal to the flow. Let us remark that it can
be easily parallelized and deal with other laws that differ from the Rabinowisch one. We can get both pressure and velocity
for various values of the parametersa, D̃e andr as well as the classical geometrical characteristics.

2 Phan-Thien Tanner (PTT) / Oldroyd-B model
The Phan-Thien Tanner / Oldroyd-B model is one of the most used models, which is able to describe viscoelastic flows

for mixtures, see [19,24]. It is based on a constitutive equation which is an interpolation between purely viscous and purely
elastic behaviors.

The constitutive equation for the elastic part of the fluid obeys the Phan-Thien Tanner law:

λ
(

∂σ⋆
el.

∂t⋆
+U⋆ ·∇σ⋆

el. +ga(∇U⋆,σ⋆
el.)

)
+ f (σ⋆

el.) σ⋆
el. = 2ηel.D(U⋆), (4)

in which ηel. andλ are positive constants which respectively correspond to the fluid viscosity and the relaxation time. The
vector fieldU⋆ = (u⋆

1,u
⋆
2,w

⋆) is the lubricant velocity,p⋆ the pressure andσ⋆
el. the extra-stress symmetric tensor. Functionf

will be defined later. The bilinear applicationga, −1≤ a≤ 1, is defined by

ga(∇U⋆,σ⋆
el.) = σ⋆

el. ·W(U⋆)−W(U⋆) ·σ⋆
el.−a

(
σ⋆

el. ·D(U⋆)+D(U⋆) ·σ⋆
el.

)
(5)

whereD(U⋆) andW(U⋆) are respectively the symmetric and skew-symmetric parts ofthe velocity gradient∇U⋆. Usually,
D(U⋆) is called the rate of strain tensor andW(U⋆) is called the vorticity tensor. Notice that the parametera is considered as
a dimensionless material slip parameter which interpolates between upper convected (a= 1) and lower convective derivatives
(a = −1), the casea = 0 being the corotational case [25]. Finally, a usual choice for the functionf gives the PTT model
(see [19,24]):

f (σ⋆
el.) = 1+

κλ
ηel.

Tr(σ⋆
el.), (6)

in which κ is a parameter related to the elongational behavior of the model. Notice also that the simple casef ≡ 1 provides
the Oldroyd-B model.

A Newtonian fluid obeys the classical law:

σ⋆
visc. = 2ηvisc.D(U⋆), (7)

whereηvisc. corresponds to the Newtonian viscosity (often associated with a solvent).

The behaviour of a viscoelastic fluid is given by the balance of momentum equation, which reads (without body forces)
by introducing pressurep⋆:

ρ
(

∂U
∂t⋆

⋆

+U⋆ ·∇U⋆

)
+ ∇p⋆ = div (σ⋆

visc. + σ⋆
el.), (8)
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whereρ is the mass density of the fluid. It can be rewritten as:

ρ
(

∂U
∂t⋆

⋆

+U⋆ ·∇U⋆

)
+ ∇p⋆−ηvisc.∆U⋆− div σ⋆

el. = 0. (9)

It is usual in the Oldroyd-B model to introduce two new parameters: a total viscosity numberη and a retardation
parameterr instead ofηvisc. andηel. such that

η = ηvisc. + ηel. and r =
ηel.

ηvisc. + ηel.
. (10)

Using the incompressibility assumption, the overall system of equation is written as

ρ
(

∂U
∂t⋆

⋆

+U⋆ ·∇U⋆

)
−η(1− r)∆U⋆ + ∇p⋆− div σ⋆

el. = 0, (11)

div U⋆ = 0, (12)

λ
(

∂σ⋆
el.

∂t⋆
+U⋆ ·∇σ⋆

el. +ga(∇U⋆,σ⋆
el.)

)
+ f (σ⋆

el.) σ⋆
el. = 2ηrD(U⋆). (13)

Choosingκ = 0 andr = 1 provides the classical Maxwell model.

3 Asymptotic analysis of the thin film flow equations for very small elongation numbers
The space coordinates are denoted by(x⋆

1,x
⋆
2,z

⋆) or more simply by(x⋆,z⋆) with x⋆ = (x⋆
1,x

⋆
2). Let ω be a fixed bounded

domain of the planez⋆ = 0. The upper surface of the gap is defined byz⋆ = H(x⋆) (see Fig. 1)
By introducing characteristic lengthsL for the domainω andH for the size of the gap, we can define the film thickness

ratio, the usual Deborah number and an elongation number

ε =
H

L
, De=

λU
L

and K=
κ
r
. (14)

The governing equations, Eqs. (11)–(13), can be expressed in dimensionless form in terms of the following dimension-
less quantities :

x =
x⋆

L
, z=

z⋆

εL
, ui =

u⋆
i

U
, w =

w⋆

εU
, (15)

p = p⋆ ε2L

ηU
, σ = σ⋆

el.
εL
ηU

, t = t⋆
U

L
. (16)

We now rescale the three classical numbers: the Reynolds number which characterises the viscous forces compared to the
convective ones, the Deborah number which highlights the elasticity of the fluid and the elongation number. Let us introduce:

Re=
ρU L

η
, D̃e=

De
ε

and K̃ =
K
ε

. (17)
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H(x⋆)

L1

L2

x⋆
1

x⋆
2

z⋆

Fig. 1. Physical domain

For convenience, we also introduce the normalized gap function:

h(x) =
H(x⋆)

εL
. (18)

In all this section, as suggested by the title of the section,K is assumed to be very small, i. e.K is of orderε (or less). The
length and velocity scaling, see Eq. (15), takes into account the thin film nature of lubricant flow. Scalings related to Re, D̃e
andK̃ can be viewed as assumptions related to operating conditions for which the present study is valid: Re and̃De must be
of order zero with respect toε. As discussed in the introduction, the scaling on the pressure and the shear rate is based upon
balancing principles that put forth the leading terms and can be rigorously proven to be valid (see [23]). By substituting these
dimensionless variables, see Eqs. (15)–(17), into Eqs. (11)–(13), we obtain the dimensionless governing equations.

The three components of the momentum equation, namely Eq. (11), are written (the notation d/dt denotes the convective
derivative):





Re
du1

dt
− (1− r)

(
∂2u1

∂x2
1

+
∂2u1

∂x2
2

+
1
ε2

∂2 u1

∂z2

)
+

1
ε2

∂ p
∂x1

−
1
ε

(
∂σ1,1

∂x1
+

∂σ1,2

∂x2
+

1
ε

∂σ1,3

∂z

)
= 0,

Re
du2

dt
− (1− r)

(
∂2u2

∂x2
1

+
∂2u2

∂x2
2

+
1
ε2

∂2 u2

∂z2

)
+

1
ε2

∂ p
∂x2

−
1
ε

(
∂σ1,2

∂x1
+

∂σ2,2

∂x2
+

1
ε

∂σ2,3

∂z

)
= 0,

εRe
dw
dt

− ε(1− r)

(
∂2w

∂x2
1

+
∂2w

∂x2
2

+
1
ε2

∂2w
∂z2

)
+

1
ε3

∂ p
∂z

−
1
ε

(
∂σ1,3

∂x1
+

∂σ2,3

∂x2
+

1
ε

∂σ3,3

∂z

)
= 0.
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For smallε, these equations formally reduce to the following set of equations:





− (1− r)
∂2u1

∂z2 +
∂ p
∂x1

−
∂σ1,3

∂z
= 0,

− (1− r)
∂2u2

∂z2 +
∂ p
∂x2

−
∂σ2,3

∂z
= 0,

∂ p
∂z

= 0,

(19)

Due to the previous dimensionless procedure the free divergence condition is preserved for the dimensionless variables:

∂u1

∂x1
+

∂u2

∂x2
+

∂w
∂z

= 0, (20)

Concerning the constitutive law, the process is similar: equations are written for the dimensionless quantities, then,
passing formally to the limitε → 0, the following equations are obtained:





σ1,1 + D̃e(1−a)σ1,3
∂u1

∂z
= 0,

σ2,2 + D̃e(1−a)σ2,3
∂u2

∂z
= 0,

σ3,3− D̃e(1+a)(σ1,3
∂u1

∂z
+ σ2,3

∂u2

∂z
) = 0,

σ1,2 +
D̃e
2

(1−a)(σ2,3
∂u1

∂z
+ σ1,3

∂u2

∂z
) = 0,

σ1,3 +
D̃e
2

(
(1−a)σ3,3

∂u1

∂z
− (1+a)σ1,2

∂u2

∂z
− (1+a)σ1,1

∂u1

∂z

)
= r

∂u1

∂z
,

σ2,3 +
D̃e
2

(
(1−a)σ3,3

∂u2

∂z
− (1+a)σ1,2

∂u1

∂z
− (1+a)σ2,2

∂u2

∂z

)
= r

∂u2

∂z
.

(21)

As an example, we provide a full equation of the whole system before passing to the limit, namely the equation related
to the first diagonal term in tensorσ:

D̃e
{[∂tσ11

∂t

]
+
[
u1

σ11

∂x1
+u2

σ11

∂x2
+w

σ11

∂z

]
+
[
σ12

(
∂u1

∂x2
−

∂u2

∂x1

)
+ σ13

(
∂u1

ε∂z
− ε

∂w
∂x1

)]

−a
[
2σ11

∂u1

∂x1
+ σ12

(
∂u2

∂x1
+

∂u1

∂x2

)
+ σ13

(
ε

∂w
∂x1

+
∂u1

ε∂z

)]}
+

σ11

ε
= 2r

∂u1

∂x1
,

the asymptotic equation being obtained by considering the terms inε−1.

In this system, it is easy to see that coefficientsσ1,1, σ2,2, σ3,3 andσ1,2 can be expressed as a function ofσ1,3, σ2,3 and of the
velocity (u1,u2). In addition, using the last two equations,σ1,3 andσ2,3 are expressed with respect to the velocity:

σ1,3 =
r

∂u1

∂z

1+ D̃e
2
(1−a2)

((
∂u1

∂z

)2

+

(
∂u2

∂z

)2
) ,

σ2,3 =
r

∂u2

∂z

1+ D̃e
2
(1−a2)

((
∂u1

∂z

)2

+

(
∂u2

∂z

)2
) .
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For the sake of simplicity, let us denote byu the first two coordinates of the velocity vector:u = (u1,u2) and by G the
following two components of the stress tensor: G= (σ1,3,σ2,3). The system can be written in the following form:





− (1− r)
∂2u
∂z2 −

∂G
∂z

+ ∇xp = 0, with G =
r

∂u
∂z

1+ D̃e
2
(1−a2)

∥∥∥∂u
∂z

∥∥∥
2
,

∂ p
∂z

= 0,

divxu+
∂w
∂z

= 0,

(22)

all the other components of the stress tensor being directlydeduced from Eq. (21).

Note that the first equation of Eqs. (22) also reads

∂
∂z

(
ηR

eff
∂u
∂z

)
= ∇x p, (23)

with the (nonlinear) effective viscosity:

ηR
eff (x,z) = 1− r +

r

1+(1−a2)D̃e
2
∥∥∥∂u

∂z
(x,z)

∥∥∥
2
. (24)

The vertical velocityw can be deduced from the horizontal velocityu by the free divergence condition. Coming back to
the physical variables, we can check that Eqs. (22) can be rewritten





∂
∂z⋆

(
ηeff

∂u⋆

∂z⋆

)
= ∇x⋆ p⋆,

∂ p⋆

∂z⋆
= 0,

divx⋆

(
Z H

0
u⋆ dz⋆

)
= w⋆(·,0)−w⋆(·,H),

(25)

with

ηeff(γ̇) = ηvisc. +
ηel.

1+ λ2(1−a2)|γ̇|2
, and γ̇ =

∥∥∥∥
∂u⋆

∂z⋆

∥∥∥∥=

√(∂u⋆
1

∂z⋆

)2
+
(∂u⋆

2

∂z⋆

)2
. (26)

Let us remark that this model can lead to an ill-posed problemas long as the graph of functioṅγ 7→ γ̇ηeff(γ̇) is not
monotone. It can be proved (see [26]) that as long as 0≤ r < 8/9, Eqs. (25)–(26) have a unique solution. Ifr ≥ 8/9, then
existence or / and uniqueness may fail. Numerical experiments using the algorithm described in Appendix C show that non
convergence situations appear as long asr ≥ 8/9.

4 A perturbation method for small elongation numbers
The scaling used to obtain Eq. (21) is related to an elongation number K whose magnitude is assumed to be the same

as the film thickness ratioε. In that case this parameter does not contribute to the asymptotic problem. If K is of order
zero with respect toε, however small, it is possible to obtain an asymptotic problem in which the elongation number K does
appear. For the sake of simplicity, computations will be ledunder the infinitely long assumption (i. e. with a 2D flow in the
x1-direction) although the method can be extended to a full 3D flow. Consequently, results will be also given in the 3D case,
as a straightforward consequence of the previous analysis.
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Under this assumption, whenε goes to zero, Eqs. (13) become:





KD̃eσ1,1(σ1,1 + σ3,3)+ σ1,1+ D̃e(1−a)σ1,3
∂u1

∂z
= 0,

KD̃eσ3,3(σ1,1 + σ3,3)+ σ3,3− D̃e(1+a)σ1,3
∂u1

∂z
= 0,

KD̃eσ1,3(σ1,1 + σ3,3)+ σ1,3+
D̃e
2

(
(1−a)σ3,3

∂u1

∂z
− (1+a)σ1,1

∂u1

∂z

)
= r

∂u1

∂z
,

(27)

For the casea = 1 (see [18]), which immediatly implies thatσ1,1 = 0, it is possible to give a simple analytic solution of
this system (see [19]) and in turn a 1D Reynolds equation. This is not so easy in the present situation, as the material slip
parametera lies between−1 and 1. As a solution of Eqs. (27) is known for K= 0 (see Section 3), it is however possible to
get an approximate solution for small values of K by linearization. Let us write

σi, j = σi, j

∣∣∣
K=0

+K
∂σi, j

∂K

∣∣∣
K=0

+O (K2).

Differentiating the three equations in Eqs. (27) with respect to K, we obtain




1 D̃e(1−a)α̇ 0
0 −D̃e(1+a)α̇ 1

−D̃e1+a
2 α̇ 1 D̃e1−a

2 α̇







∂σ1,1

∂K

∂σ1,3

∂K

∂σ3,3

∂K


∣∣∣

K=0

=



−D̃eσ1,1(σ1,1 + σ3,3)

−D̃eσ3,3(σ1,1 + σ3,3)

−D̃eσ1,3(σ1,1 + σ3,3)


∣∣∣

K=0

in which whe have defined

α̇ =
∂u1

∂z

∣∣∣
K=0

. (28)

The right hand side of this system is known from Eq. (21) as it has to be computed for K= 0. Solving this system, we obtain

∂σ1,3

∂K

∣∣∣
K=0

=
2r2 α̇3 D̃e

2
a(D̃e

2
(1−a2)α̇2−1)

(1+ D̃e
2
(1−a2)α̇2)3

, (29)

and deduce the following approximation for small K:

σ1,3 ≈

(
r

1+ D̃e
2
(1−a2)α̇2

+K
2r2 α̇2 D̃e

2
a(D̃e

2
(1−a2)α̇2−1)

(1+ D̃e
2
(1−a2)α̇2)3

)
α̇. (30)

When dealing with a full 3D flow, computations lead to a straightforward adaptation and the shear stress rate reads:

σi,3 ≈

(
r

1+ D̃e
2
(1−a2)β̇2

+K
2r2 β̇2 D̃e

2
a(D̃e

2
(1−a2)β̇2−1)

(1+ D̃e
2
(1−a2)β̇2)3

)
∂ui

∂z
,

with

β̇2 =

(
∂u1

∂z

)2

+

(
∂u2

∂z

)2

. (31)
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Consequently, the first equation of Eqs. (25) also reads

∂
∂z

(
ηR

eff
∂u
∂z

)
= ∇x p,

where

ηR
eff (x,z) = 1− r +

r

1+ D̃e
2
(1−a2)

∥∥∥∥
∂u
∂z

(x,z)

∥∥∥∥
2

+ K

2r2 D̃e
2
a

∥∥∥∥
∂u
∂z

(x,z)

∥∥∥∥
2
(

D̃e
2
(1−a2)

∥∥∥∥
∂u
∂z

(x,z)

∥∥∥∥
2

−1

)


1+ D̃e

2
(1−a2)

∥∥∥∥
∂u
∂z

(x,z)

∥∥∥∥
2


3 .

This expression is valid as long as K is small. However, as themagnitude of K is not known, this study aims at giving some
qualitative results about the influence of the elongation number rather than quantitative results.

Relative effective viscositẏγ 7→ ηR
eff(γ̇) is plotted versus log(γ̇) for three different values of K, see Fig. 2. For K= 0,

we get the classical Rabinowisch law. For K≤ 0.4, the overall shape of the curve does not change, the slope decreasing as
K increases. For small values ofγ̇, the viscosity is smaller than the one defined in the classical Rabinowisch law while it
becomes greater for large values ofγ̇. For K > 0.4, the overall shape becomes completely different, as the shear thinning
effect tends to disappear. It is reasonable to think that theperturbation method is no longer valid. It is worth also mentioning
that taking into account the elongation number in the effective viscosity law increases the range of the values ofr for which
the graph of the functioṅγ 7→ γ̇ηR

eff(γ̇) is monotone. Then Eqs. (25)–(32) taking into account an additional elongation number
may have a unique solution even forr greater than 8/9 (see Section 5.2).

Note that in terms of real physical values, the effective viscosity reads

ηeff(γ̇) = ηvisc. +
ηel.

1+ λ2(1−a2)|γ̇|2
+

2κηel. λ2a|γ̇|2(λ2(1−a2)|γ̇|2−1)

(1+ λ2(1−a2)|γ̇|2)3 . (32)

−2 −1 0 1 2 3
0.2

0.4

0.6

0.8

1

 log(γ)

 η
ef

f(γ
)

 

 

 K=0.0
 K=0.2
 K=0.4
 K=0.6

Fig. 2. Influence of the elongation correction on the relative effective viscosity as a function of the shear rate (a = 0.8, D̃e= 0.5, r = 0.8)
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5 Numerical simulations
In the whole section, we present numerical results that havebeen performed with data from Tab. 1. Although widely

discussed [27, 28], homogeneous pressure boundary conditions along the boundary of the contact area have been retained
for all numerical experiments with the exception of Test (G)(see Appendix B) for which an input flux is associated to the
supply groove of the device.

5.1 Nonlinear Oldroyd asymptotic model: a numerical simulation
Fig. 3–4 have been performed with the data referred as Test (A) (see Tab. 1) with retardation parameterr = 0.8 and

Deborah number̃De= 1.3 (notice that 3D profiles are presented in the unit cube wherethe third direction, which is orthogonal
to the shear plan, has been rescaled asZ := z/h(x)). In particular,

− Fig. 3 (left) represents the pressure distribution in the thin film. More details will be given later on the effects of the
Oldroyd contribution on the pressure distribution.

− Fig. 3 (right) represents the distribution of the effectiverescaled viscosity defined by

ηR
eff(x,z) := 1− r +

r

1+(1−a2)D̃e
2
∥∥∥∥

∂u
∂z

(x,z)

∥∥∥∥
2 . (33)

In the Newtonian case, the effective relative viscosity is uniformly equal to 1 ; in the Oldroyd model, velocity gradients
lead to a non-uniform distribution of the effective viscosity, which varies from 1− r to 1.

− Fig. 4 represents the distribution of the stress tensor components. More details will be given later on the effects of the
Oldroyd contribution concerning these variables.

5.2 Influence of the elongation correction
As previously mentioned, the range of validity for the retardation parameterr is wider using the elongation correction.

Numerical simulation referred as Test (B) (see Tab. 1) presents the following results. Pressure profiles are plotted on Fig. 5
for various parameters around the upper limitr = 8/9 with a= 0.2 andD̃e= 0.72. Let us recall that, for K= 0, the algorithm
cannot capture the solution asr > 8/9 (as the problem is ill-posed). Fortunately, forr = 0.91, the choice K= 0.82 allows us
to get a solution (the problem becomes well-posed thanks to the PTT correction), which can be compared to the solution of
the problem with values such as(r,K) = (0.88,0.79) and(r,K) = (0.88,0.00). Thus Fig. 5 presents the results related to the
pressure distribution, at least when the problem is well-posed.

Fig. 6–7 presents the results related to the stress components at the shearing surface by focusing on the influence on the
elongation number: the value of K is moderate but leads to significant change in the shape of the stress profiles.

5.3 About the perturbation method with respect to the Deborah number
As mentionned in the first section, a perturbation-asymptotic approach has been proposed by J. Tichy [18] for the upper

convective Maxwell (UCM) model (a = 1, r = 1). Assuming a linear dependence with respect to the Deborahparameter, it
is assumed that the (real) viscoelastic pressurepDe is related to the Newtonian onep0 by the following relationship

pDe = p0 +Dep(c), (34)

wherep(c) is a corrective pressure. As soon asp(c) is computed, it is possible to know the real pressure for any small De by an
elementary additive procedure. In the present situation corresponding to the case−1< a < 1 and 0< r < 1, it is noteworthy
that the previous expansion is not relevant (see Tab. 2, obtained with the numerical parameters presented as Test (C), see
Tab. 1). By selecting different values ofr, introducing the load

L :=
ZZ

ω
p(x)dx, (35)

we prove numerically that, for all values of the retardationparameter which are less than 8/9, the difference of pressure mean

values between the non-Newtonian case and the Newtonian case behaves asO (D̃e
2
) for small values of̃De (see, for instance,

Fig. 8), i. e.

pD̃e = p0 + D̃e
2

p(c). (36)
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(A) (B)

Fig. 3-4, 9-10 Fig. 5-6-7

Fluid domain:

Domainω [0,1]× [0,1] [0,1]× [0,1]

Gaph(x) 1−0.8x1 1−0.8x1

Shear velocitys (1,0) (1,0)

Rheological data:

Retardation parameterr 0.00∼ 0.80 0.88∼ 0.91

Deborah number̃De 1.30 0.72

Material slip parametera 0.80 0.80

Elongation number K 0.00 0.00∼ 0.82

Boundary conditions: p= 0 p = 0

Numerical parameters:

Mesh numbers 40×20×20 40×20×20

Artificial time stepδ 10−3 10−4

Equilibrium parameterrp/δ 10−4 10−4

(C) (D)

Fig. 8, Tab. 2 Tab. 3

Fluid domain:

Domainω [0,1]× [0,5] [0,1]× [0,1]

Gaph(x) 1+H ′x1 +0.5H ′′ (x2
1−x1) 1−0.25x1

Shear velocitys (1,0) (1,0)

Rheological data:

Retardation parameterr 0.75∼ 0.85 0.00∼ 0.80

Deborah number̃De 0.00∼ 2.50 0.00∼ 1.80

Material slip parametera 0.80 0.80

Elongation number K 0.00 0.00∼ 0.16

Boundary conditions: p= 0 p = 0

Numerical parameters:

Mesh numbers 40×20×40 40×40×10

Artificial time stepδ 10−3 10−4

Equilibrium parameterrp/δ 10−4 10−3

Table 1. Numerical data (numerical parameters are related to the algorithm, see Appendix C)
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Fig. 3. Pressure distribution (left) and effective viscosity including Oldroyd contribution: (x1,x2,z) 7→ ηR
eff(x1,x2,z) (right) in the linear

converging profile with r = 0.8, D̃e= 1.3 and a = 0.8
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Fig. 4. Stress (x1,x2,z) 7→ (σ11− σ33)(x1,x2,z) (left) and (x1,x2,z) 7→ σ13(x1,x2,z) (right) in the linear converging profile with

r = 0.8, D̃e= 1.3 and a = 0.8

Moreover, when the Deborah number is not too small, the quadratic behaviour of the pressure is not valid anymore, as
shown on Fig. 8. In this work, we emphasize that our model doesnot rely on any assumption on the amplitude of the Deborah
number and a numerical solution can be computed without smallness restriction oñDe, unlike J. Tichy’s work. Notice that
our results have been obtained with the same data as J. Tichy’s, adapted to the 2D case (J. Tichy’s results are 1D), i. e. in a
domain(0,1)× (0,5).

r = 0.25 r = 0.50 r = 0.75 r = 0.80 r = 0.85

H ′ = −0.8, H ′′ = −1 1.941 1.893 1.928 1.947 1.978

H ′ = −0.8, H ′′ = +1 2.128 1.990 1.985 1.994 2.008

Table 2. Order of convergence of the load with respect to the Deborah number, for small values of D̃e

5.4 Influence of the parameters on the load
Numerical simulations, here referred as Test (D) (see Tab. 1), investigate the influence of the retardation parameterr,

the Deborah number̃De and the elongation number K over the load. For any value of the retardation parameterr, numerical
results highlight some general trend (see Tab. 3: for moderate values of̃De, then the load computed with the perturbation
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Fig. 5. Pressure distribution x1 7→ p(x1,x0
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2 := D/2, in the (linear) converging profile. Influence of the

elongation number (other parameters are: a = 0.80, D̃e= 0.72
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Fig. 6. Stress component x1 7→ (σ13)(x1,x0
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0), following the streamline x0
2 := D/2 at the shearing surface z0 := 0, in the (linear)

converging profile. Influence of the elongation number (other parameters are: r = 0.88, a = 0.80, D̃e= 0.72)
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Fig. 7. Stress component x1 7→ (σ11−σ33)(x1,x0
2,z

0), following the streamline x0
2 := D/2 at the shearing surface z0 := 0, in the (linear)

converging profile. Influence of the elongation number (other parameters are: r = 0.88, a = 0.80, D̃e= 0.72)

corrector (i. e. K= 0.2 · r in our simulation) is less than the load computed with K= 0.0 ; then, wheñDe becomes greater
than 1, the load computed with the perturbation corrector isgreater than the load computed with K= 0.0.

6 Conclusion
Upper convective model (UCM) assumption is often retained for studying viscoelastic thin film flows. Deleting this

assumption, it has been possible to prove that for a convenient choice of governing parameters, thin film flows based upon
an Phan-Thien Tanner / Oldroyd-B viscoelastic model can be completely described by a double Newtonian (modified) Ra-
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geometry H ′ = −0.8, H ′′ = −1, and with a = 0.8. For small values of D̃e, the slope of the graph is approximatively equal to 2

Load∗1e+3 r = 0.2 r = 0.5 r = 0.8

D̃e= 0.0 75.45 (±00.00) 75.45 (±00.00) 75.45 (±00.00)

D̃e= 0.2 75.21 (−00.23) 74.84 (−00.80) 74.35 (−01.93)

D̃e= 0.5 73.64 (−01.62) 68.66 (−04.18) 63.44 (−06.91)

D̃e= 0.8 70.32 (−01.00) 59.92 (−02.38) 48.39 (−03.46)

D̃e= 1.2 66.67 (+01.12) 50.25 (+03.47) 30.69 (+07.98)

D̃e= 1.5 64.86 (+02.13) 45.57 (+06.12) 22.03 (+13.10)

D̃e= 1.8 63.67 (+02.46) 42.64 (+06.84) 16.98 (+14.14)

Table 3. Load in the viscoelastic case for various values of r and D̃e. For each set of parameters, the entry corresponds to the load without

elongation correction i. e. K = 0.0 (resp. load deviationdue to the elongation correction K = 0.2 · r)

binowisch effective viscosity law. Using a new algorithm, influence of the various parameters has been described for the
pressure and for the stress tensor. The detailed distribution of the viscosity in the contact area has been presented andshows
that shear thinning effect takes place even for very moderate operating conditions. Further non linear effects due to the
elongation numbers can be taken into account by way of a perturbation method, so leading to a modified Rabinowisch law.
As a consequence, a reduction in the load capacity is obtained for small Deborah numbers while a load increase is gained
for greater Deborah numbers.
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In the appendix, we present some complementary results, with data presented on Tab. 4.

A Influence of rheological parameters in the asymptotic model
A.1 Influence of the retardation parameter

Fig. 9–10 focus on the influence of the retardation parameteron the solution. The Deborah number is taken asD̃e= 1.3.
Other data are presented in Tab. 1 (see Test (A)). Starting from the pressure of the Newtonian problem with viscosity 1
(r = 0), we can observe that the solution highly depends onr (computations cannot be performed for values greater than 8/9
due to ill-posedness of the problem and, consequently, non-convergence of the algorithm). The pressure tends to decrease as
the retardation parameter increases ; elastic effects alsomodify in a significant way the shear stress located at the shearing
surface, thus suggesting that the rheological properties (such as the retardation parameter) are among the major determinants
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(E) (F)

Fig. 11-14 Fig. 15, Tab. 5

Fluid domain:

Domainω [0,1]× [0,1] [0,1]× [0,1]

Gaph(x) 1−0.8x1 1− (1−Hmin)x1

Shear velocitys (1,0) (1,0)

Rheological data:

Retardation parameterr 0.80 0.70 | 0.30

Deborah number̃De 0.00∼ ∞ 0.72

Material slip parametera 0.80 0.80

Elongation number K 0.00 0.00

Boundary conditions: p= 0 p = 0

Numerical parameters:

Mesh numbers 40×20×20 80×20×40

Artificial time stepδ 10−3 10−4

Equilibrium parameterrp/δ 10−4 10−4

(G)

Fig. 16

Fluid domain:

Domainω [0,1]× [0,5]

Gaph(x) (2x1−1)2+0.5

Shear velocitys (1,0)

Rheological data:

Retardation parameterr 0.00∼ 0.70

Deborah number̃De 1.30

Material slip parametera 0.80

Elongation number K 0.00

Boundary conditions:

Conditions atx1 = 0 flux

Conditions on other boundaries p = 0

Numerical parameters:

Mesh numbers 40×80×20

Artificial time stepδ 10−4

Equilibrium parameterrp/δ 10−4

Table 4. Numerical data

17



of the lubricants efficiency.
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Fig. 9. Pressure distribution x1 → p(x1,x0
2), following the streamline x0

2 := D/2, in the (linear) converging profile with D̃e= 1.3 and for

different values of the retardation parameter r = 0.1, 0.2, ...,0.8
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Fig. 10. Component of the constraint tensor x1 → σ13(x1,x0
2,z

0) (left), x1 → (σ11−σ33)(x1,x0
2,z

0) (on right) following the streamline

x0
2 := D/2 at the shearing surface z0 := 0, in the (linear) converging profile with D̃e = 1.3 and for different values of the retardation

parameter r = 0.1, 0.2, ...,0.8

A.2 Influence of the Deborah number and material slip parameter
Let us remark that, in Eq. (26), the Deborah numberD̃e and the material slip parametera can be reduced into one single

parameter, as the effective viscosity law only depends on the parameter̃De
2
(1−a2) (of course, this does not hold anymore

when taking into account the influence of the elongation number, i. e. K 6= 0). Therefore, we choose to imposea = 0.8 and
let De vary from 0 to large values. In that prospect, Fig. 11–14 focus on the influence of the Deborah number. The numerical
experiment is referred as Test (E) (see Tab. 4). The retardation parameter is taken asr = 0.8. Starting from the pressure of the
Newtonian problem with viscosity 1 (̃De= 0), we can observe that increasing the value ofD̃e tends to decrease the pressure,
until converging to a pressure which is identified to the solution of the Newtonian problem with viscosity 1− r. In a similar
way, we would observe that the behaviour of the shear stressσ13 obeys the same trend (therefore, the corresponding figure is
volunteerily omitted): increasing the value of the Deborahnumber leads (in a monotone way) the initial solution (Newtonian
solution with effective viscosity uniformly equal to 1) to alimit solution identified as a Newtonian solution with effective
viscosity 1− r, the path being nonlinear due to elastic effects. However, dependency with respect to the Deborah number
may not be monotone, as forσ11−σ33, see Fig. 12-14. In both Newtonian regimes (D̃e= 0 andD̃e= +∞), the computation
of the solution leads toσ11−σ33 = 0 atx0

2 = D/2, z0 = 0, but the path between those two regimes is the following one:

− Fig. 12 shows that, in the chosen configuration,σ11−σ33(·,x0
2,z

0) decreases with respect tõDe for small values of̃De
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only ;
− Fig. 13 reveals the change of the trend: monotonicity fails at intermediate values of̃De ;
− Fig. 14 shows that, in the chosen configuration,σ11−σ33(·,x0

2,z
0) increases with respect tõDe for large values of̃De.
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Fig. 11. Pressure distribution x1 7→ p(x1,x0
2), following the streamline x0

2 := D/2, in the (linear) converging profile with r = 0.8 and for

different values of the Deborah number D̃e= 0.1, 0.2, ...,5.0

A.3 Effective viscosity in the Oldroyd-B thin film flow

In this subsection, we study the influence of the Oldroyd-B model on the effective viscosity. Numerical parameters are
presented in Tab. 4, referred as Test (F). In this non-Newtonian regime, we have focused on a flow which is compressed in a
linear profile, the maximal gap being fixed to 1, the minimal gap Hmin varying from 0.90 to 0.01.

From the equations, we infer that the effective viscosity varies from 1− r and 1. Fig. 15 illustrates the distribution
of the three-dimensional effective viscosity within the theoretical range, for different values ofHmin. It is observed that
decreasing values ofHmin tend to spread the distribution. More precisely, high velocity gradients, here associated to minimal
gap thickness, lead to reach the minimal effective viscosity: large values ofHmin are not sufficient to cover the whole range
of values, although small values ofHmin widen the range of values and tend to spread the distributionfrom the minimal value
to the maximal one. This is mainly due to the fact that small values ofHmin lead to high velocity gradients, thus diminishing
the effective velocity. This is also represented by Tab. 5 which provides the mean value of the effective viscosity in the3D
domain, the standard deviation with respect to this mean value and the numerical range which is reached.

Hmin mean value standard deviation min. value max. value

0.90 0.848 0.010 0.806 0.884

0.50 0.775 0.078 0.434 0.970

0.20 0.689 0.170 0.314 1.000

0.10 0.664 0.214 0.304 1.000

0.05 0.658 0.233 0.301 1.000

0.01 0.643 0.243 0.300 1.000

Table 5. Heterogeneity of the effective viscosity distribution in the viscoelastic fluid flow (r = 0.7, De= 0.72, a = 0.8), depending on the

converging profile
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Fig. 15 represents the same computation, adapted to the two-dimensional average effective viscosity, defined as

ηR
eff(x) :=

1
h(x)

Z h(x)

0
ηR

eff(x,z)dz. (37)

in order to give some comprehensive details on the effectiveviscosity associated to the thin film flow. Although the effective
viscosity distribution significantly reaches values greater than 0.9, the average effective viscosity never reaches such values.
This means that the effective viscosity is not homogeneous in the thin film thickness direction. It also means that variations
of velocity gradients (associated to the measure of the effective viscosity) may be important in the thin film thickness,at least
for small values of the gradients. As a consequence, this reveals the heterogeneous properties of the viscoelastic fluidflow
with respect to the direction orthogonal to the shearing surface (i. e. in the thin film thickness).

B Boundary effects due to elastic perturbation
Fig. 16 represents the pressure distribution for differentvalues of the retardation parameter. The geometry relies ona

converging-diverging profile (see Tab. 4, Test (G)) with an imposed fluxq = 0.2sh(0, ·) at x1 = 0. The dimensions of the
domain fall into the scope of the journal bearing of infinite width assumption, as 0< x⋆

1 < 1 and 0< x⋆
2 < 5. In the Newtonian

regime, it is observed that the infinite width approximationis valid, leading to the use of 1D reduced models instead of 3D
initial systems ; in the non-Newtonian situation, the numerical result suggests that such an assumption may be not valid
anymore when the retardation parameter becomes too large.

C Numerical algorithm
This method is based on a fixed point procedure. The first idea is to consider that the unknown velocity-pressure(u, p)

(solution of Eqs. (25) and (26) or, if considering the PTT correction, Eqs. (25) and (32)) can be computed as the limit asn
tends to infinity of a sequence(un, pn) solution of

∂
∂z

(
F(un−1)

∂un

∂z

)
= ∇pn, div

(
Z H

0
un(·,z)dz

)
= 0, (38)

in which functionF is related to the viscosity law, namely

F(u) = 1− r +
r

1+ D̃e
2
(1−a2)

∥∥∥∥
∂u
∂z

∥∥∥∥
2 ,

without the PTT correction, or

F(u) = 1− r +
r

1+ D̃e
2
(1−a2)

∥∥∥∥
∂u
∂z

∥∥∥∥
2

+ K

2r2D̃e
2
a

∥∥∥∥
∂u
∂z

∥∥∥∥
2
(

D̃e
2
(1−a2)

∥∥∥∥
∂u
∂z

∥∥∥∥
2

−1

)


1+ D̃e

2
(1−a2)

∥∥∥∥
∂u
∂z

∥∥∥∥
2


3 ,

with the PTT correction.

In turn,(un, pn) are computed for each value of the indexn as the limit of the solution of a fixed-point problem (intro-
ducing new indexk).

∂
∂z

(
F(un−1)

∂un,k+1

∂z

)
= ∇pn,k, pn,k+1− pn,k + δ div

(
Z H

0
un(·,z)dz

)
= 0, (39)
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in which δ is an artificial penalization parameter.
In order to solve Eq. (38), a semi-discretization in the(x1,x2)-direction is introduced. We use a centered structured grid

based on a classical cell configuration (see Fig. 17, for a rectangular domain with a sizeL×D).
Let us denote byN = N1×N2 the overall number of unknowns corresponding to this discretisation, byδ1 (resp.δ2) the

step in thex1 (resp.x2) direction, byhi j the value ofh at a node(i, j). Furthermore, we denote

U(z) = (ui j (z)) := (u(iδx1, jδx2,z))
P = (pi j ) := (p(iδx1, jδx2))

(40)

the semi-discretized horizontal velocity and discretizedpressure.
Let A (resp.B) correspond to thex-discretisation of the operator∇ (resp. div). We use the notation

(
H̃U
)

i j
:=

Z hi j

0
ui j (z)dz. (41)

The overall procedure reads now:

Loops onn:





Un,0 = Un, Pn,0 = Pn,

Loops onk:





−
∂
∂z

(
F(Un)

∂Un,k+1

∂z

)
+A◦Pn,k = 0,

Pn,k+1−Pn,k + δB◦
(

H̃U
n,k+1)

= 0,

Un+1 = Un,∞, Pn+1 = Pn,∞.

This internal problem is a linear one as the computation of the new pressurepn,k+1 is an explicit procedure while the
computation of the velocityun,k+1 is obtained by solving a set of ordinary partial differential equations in thez−direction,
which is equivalent to solve a linear system of equations after a discretization in thez−direction (Nz nodes).

The stopping test of the internal loop is based on the pressure errorPn,k+1−Pn,k and on the velocity errorUn,k+1−Un,k.
Note that the precision sought in pressure will induce a precision on the incompressibility condition via the parameterδ.
In fact, the algorithm is stopped as soon as|Pn,k+1−Pn,k| is smaller than a prescribed value, notedrp. If this condition is
satisfied, it means in particular that the divergence term satisfies

max
i j

∣∣∣
(

B◦
(

H̃U
n,k+1))

i j

∣∣∣≤ rp

δ
, (42)

i. e. the free divergence equality is satisfied with an order of rp/δ. For this reasonrp/δ will be called the “equilibrium
parameter (for the free divergence condition)”. In order tonumerically attain the free divergence equality, we have toimpose
some value forrp satisfyingrp ≪ δ.

Numerical experiments show thatδ = 10−3 andr = 10−4δ ensure good convergence forN1 = 40,N2 = 40 andNz = 20,
see [26].
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Fig. 12. Stress component x1 7→ (σ11−σ33)(x1,x0
2,z

0), following the streamline x0
2 := D/2 at the shearing surface z0 := 0, in the

(linear) converging profile with r = 0.7 and for different values of the Deborah number D̃e= 0.00, 0.17, 0.33, 0.50
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Fig. 13. Stress component x1 7→ (σ11−σ33)(x1,x0
2,z

0), following the streamline x0
2 := D/2 at the shearing surface z0 := 0, in the

(linear) converging profile with r = 0.7 and for different values of the Deborah number D̃e= 0.5, 0.65, 0.80, 0.95, 1.15
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Fig. 14. Stress component x1 7→ (σ11−σ33)(x1,x0
2,z

0), in the (linear) converging profile with r = 0.7 and for different values of the

Deborah number D̃e= 1.15, 1..33, 1.50, 1.60, 3.33, 5.00;+∞
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Fig. 15. left: Percentage distribution of the effective viscosity in the three dimensional thin film flow, for different values of Hmin, in a

non-Newtonian regime (D̃e= 0.72, r = 0.7 and a = 0.8). right: Percentage distribution of the averageeffective viscosity in the two
dimensional thin film flow, for different values of Hmin, in a non-Newtonian regime (D̃e= 0.72, r = 0.7 and a= 0.8). Effective viscosity

varies from 1− r to 1

0
0.5

1

0

2.5

5
−0.6

−0.3

0

0.3

 X1
 X2

 P
(X

1,
X

2)

0
0.5

1

0

2.5

5
−0.5

−0.25

0

0.25

 X1
 X2

 P
(X

1,
X

2)

0
0.5

1

0

2.5

5

−0.3

−0.2

−0.1

0

0.1

 X1
 X2

 P
(X

1,
X

2)

0
0.5

1

0

2.5

5
−0.3

−0.2

−0.1

0

 X1
 X2

 P
(X

1,
X

2)

Fig. 16. Pressure distribution in a converging-diverging profile (from top left to bottom right): r = 0.0, r = 0.2, r = 0.5 and r = 0.7,

obtained with D̃e= 1.3 and a = 0.8
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