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ABSTRACT

In this paper, an asymptotic expansion is used to derive argd®n of Phan-Tien Tanner / Oldroyd-B flows
in the thin film situation without the classical “Upper Comtize Maxwell” assumption. We begin with a short
presentation of the Phan-Thien Tanner / Oldroyd-B modelshvimtroduce viscoelastic effects in a solute-solvant
mixture. The three dimensional flow is described using fivarpaters, namelpe the Deborah number (or the
relaxation parametek), the viscosity ratio r, the bulk fluid viscosity the material slip parameter a related to the
“convected derivative” and an elongation number Then we focus on the thin film assumption and the related
asymptotic analysis that allows us to derive a reduced maspkrturbation procedure for “not too small” values
ofk allows us to obtain further results such as an asymptotitetfve viscosity / shear rate” law which appears to
be a perturbation of the double Rabinowisch model whoserpatars are completely defined by those of the original
three dimensional model. And last a numerical procedurerap@sed based on a penalized Uzawa method, to
compute the corresponding solution. This algorithm cao &ls used for any generalized double Newtonian shear
thinning Carreau law.



Nomenclature

#  Order of magnitude of the gap

£ Order of magnitude of the bearing length

u  Order of magnitude of the shear velocity

L1, L, Dimensions of the contact area

H (h) Gap (dimensionless)

€= /L Film thickness ratio

Re Reynolds number

De (If)ve: De/s) Deborah number (rescaled)

K (K=k/r,K=K/g) Elongation number (rescaled)

b, c,n,G Parametersin Carreau-Yosida law

a Material slip parameter in the time derivative

Ratio of viscosities or retardation number

Relaxation time

Density

Convergence parameters in the algorithm

O, Ox, Discretization parameters

s Dimensionless velocity &= 0 in the directionx;

t* (t) Time (dimensionless)

p* (p) Pressure (dimensionless)

0o Input mass flux value

U* = (uj,u5,w") (U= (ug,uz,w)) Velocity (dimensionless)

X* = (X1,%), (X= (X1,X2)) Coordinates on the shearing surface (dimensionless)
Z" () Orthogonal coordinate (dimensionless)

D(U) = 3(0U+ T(OU)) Symmetric parts of the velocity gradient
W(U) = 2(0U—T(OU)) Skew-symmetric parts of the velocity gradient
y(a, B) Shear rate (dimensionless 1D -for long devices- or 2D)
N1, N2, Net.» Nuisc., Neff, N Viscosities

0%, 0%, Gisc. (0, Tel, Ovisc)  Stress tensor (dimensionless)

T Shear stress

w Contact area

oNo >

1 Introduction

Many authors have investigated the non-Newtonian effecthiiols based upon various rheological models in lubri-
cation [1]. In most of them, the main keypoint relies on theich of the relationship between the effective viscogity
and the shear ratg (or the effective viscositylesr and the shear stres$. For mineral oil / polymer blends this relation
shows a shear thinning effect (decreasing slope) of the plewetype and two plateaux (corresponding to either smidkst
values or high stress values). This behavior is known aslddd&wtonian shear thinning. As for full 3D non-Newtonian
Navier-Stokes fluids [2, 3] Carreau-Yasuda models are afsexl:

Ner(¥) = No+ — 12 or neg(t) =npt — 212 (1)

(1+ (by)c) ° (1+ (T/G)C) °

Values of the parameters are often obtained by fitting erpenital data [4—8] although specific values are sometimes ob-
tained using ad-hoc physical reasons (like- 2/3, n = 1/3 for pseudo-plastic systems in Cross [9]). It has been also
observed that some values of the parameters allow us tonadbt@aie dimensional Reynolds equation (Ellis model= 0,
¢c=1-—nin[10], double Rabinowisch modeat= 2,n= —1 in [4], double Ferry modet = 1, n = 0 [4], approximate single
Carreau modei, = 0,c=2in [11], single Rabinowisch model in [12]), or even two dms®nal Reynolds equation with the
single Rabinowisch model [6, 13]. However, only two of thera able to deal with the double shear thinning feature. Let us
mention also that a Reynolds-type equation is obtainedrf@taing fluid by T. F. Conry, S. Wang and C. Cusano [14]. The
derivation of a generalized Reynolds equation is of padicimterest as it prevents from performing additional gnégions
across the film, thus limiting computational costs. To dedhthat difficulty, approximate 2D Reynolds equations have
been sometimes proposed as in [15] and [16]. A comparisandagt these two approximations can be found in [17].



The present paper is concerned with another kind of restilitshiare obtained by using asymptotic methods to deriveaediu
models based on the thin film assumption (with or without itélg long devices assumption) starting from non-Newtania
Navier-Stokes models (depending on several rheologicahpeters: the fluid viscosity, the retardation number the ma-
terial slip parametea, the elongation numbaey, the fluid relaxation time& which is directly related to the Deborah number
De). Pioneering works are those of J. Tichy [18], and morem#y F. T. Akyildiz and H. Bellout [19], and R. Zhang and
X. K. Li [20]. In the work of J. Tichy [18], the departure poiigthe linear Maxwell purely elastic upper convective model
(that corresponds to=1,a= 1,k = 0, see Section 2 for the definition of those rheological patens) and the Deborah
number De is used as a perturbation parameter from the Nemtpnessurgyg and velocity. In order to keep the greatest
number of terms in the asymptotic equation (including nawbbdnian effects) and avoid singularity for small film thielss
ratio€, the scaling of the stress tensor is not the same for all thestand De is of the same order of magnitude theuhich
represents the film thickness ratio. Introducing pres@geecorresponding to the viscoelastic configuration, and piress
po corresponding to the Newtonian configuration, J. Tichy pegs an asymptotic expansion which takes the form (after
dimensionless procedurppe = po+ Dep'©, wherep(© is a corrective pressure obeying a Reynolds-type equalioite
work of F. T. Akyildiz and H. Bellout [19], the departure poiis the Phan-Thien Tanner (PTT) / Maxwell modek 1,
a=1,kK # 0, see Section 2 for the definition of those rheological patans). In order to balance the effects of the Newto-
nian and nonlinear contributions, it is assumed that theob@bnumber and the stress tensor are also of the same order of
magnitude as (thin film ratio). Collecting the leading terms of all the eqns leads to the derivation of a new Reynolds
equation. The difference with the results of J. Tichy is nayalue to the nonlinearity in the stresses included in th& PT
model, but also to the fact that the influence of De is now idetliin the obtained Reynolds equation. A close examination
of these works show that the proposed asymptotic procedunaly valid under the assumptian= 1, corresponding to the
so-called upper convective Maxwell (UCM) model. This cleo@lows easier computations but it is not relevant in some
experiments or theoritical works, see for instance [21j22fhich a valuea = 0.8 is often retained. In that case the whole
asymptotic procedure has to be revisited.

Section 2 is devoted to the presentation of the Phan-Thianéra Oldroyd-B departure model. The asymptotic procedure
is described in Sections 3 and 4. In both sections, as in P8tHe Deborah number De is of the same order of magnitude
than the thin film ratio parameter. Unlike J. Tichy’s assuomp{18], dimensionless assumptions in our model are theesam
for all the components of the stress tensor. This has beenotgly proved in [23] fork = 0 by G. Bayada, L. Chupin
and B. Grec and the analysis is valid not only for 2D flows bsbdbr 3D flows. Moreover we are able to cope with a
wider range of material slip parameter values (which arateel to the objective time derivates): more precisely, oonkw
includes not only the classical Jaumann oae-(0) but also any value between lower convected derivatizes 1) and
upper convective derivativea & 1). Similarly, any combination of viscous and elastic effatan be obtained by defining a
retardation parameter value (denotg¢thetween 0 and 1.

In Section 3, the elongation numbieris assumed to be very small (same order of the magnitudg ahd consequently
disappears in the asymptotic procedure. The resultingtitoiige equation reads:

ni—nz
Neff =N2+ ——
© 1+ (by)?

All parameters can be linked with those of the 3D model by:

)

b=Avi-a  nz=(1-r)n and ni=n,

where viscosity) can be related to the viscous or elastic contributions ofitheé (see Eq. (10)). Equation (2), together with
the asymptotic hydrodynamic mass flow equation allows ustoptite all the characteristics of the flow.

In Section 4, we aim at introducing the elongation effectthim anisotropic law. To do so, we pick out the same scaling
for the Deborah number and the stress tensor whikeassumed to be of order zero with respect to the aspect ritie
nonlinear asymptotic system is solved for small values lo§ using a perturbation procedure as in [18, 20]. The cartisté
equation can be written as

neﬁ:n2+Lr:]22+Kg(aar7)\v-y)' (3)
1+ (by)

Numerical results appear in Section 5. In a first simulationa non-Newtonian configuration, effective viscosity and
stresses distributions are computed, revealing in paatitieterogeneity of the effective viscosity in the 3D flovheh we
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focus on the influence of the elongation number on the visstiel flow. We also discuss the influence of the Deborah
number De: it is proved that the difference between the nemtlinian pressure and the Newtonian one is proportional to
De? and not to De as for the UCM model proposed in [18]. We finaligviite some information on the way the load does
depend on the rheological properties of the fluid. Additloraults are presented in the Appendices: supplementsmtse
about the influence of rheological parameters appear in Agige\. It is observed in Appendix B that the classical infimyt
long bearing assumption may be irrelevant due to the nontdtaan effects, at least in some particular cases of oil supp
At last a new algorithm is proposed in Appendix C to solve the Newtonian problem: the idea is to introduce a fixed point
procedure and a penalization of the divergence free equadiich acts as an implicit Reynolds equation. This procedr
based on separate computations in the directions of the fidvirethe direction normal to the flow. Let us remark that it can
be easily parallelized and deal with other laws that diffenf the Rabinowisch one. We can get both pressure and velocit
for various values of the parameter,sﬁe andr as well as the classical geometrical characteristics.

2 Phan-Thien Tanner (PTT) / Oldroyd-B model

The Phan-Thien Tanner / Oldroyd-B model is one of the mosd nsedels, which is able to describe viscoelastic flows
for mixtures, see [19, 24]. Itis based on a constitutive équavhich is an interpolation between purely viscous angk|yu
elastic behaviors.

The constitutive equation for the elastic part of the fluigydbthe Phan-Thien Tanner law:

00y
7\< st +UT Oog + ga(DU*,Gél.)) +f(05) Oa. = 2nelD(U7), 4)

in whichne andA are positive constants which respectively correspondeditlid viscosity and the relaxation time. The
vector fieldU* = (u7,us,w*) is the lubricant velocityp* the pressure anof; the extra-stress symmetric tensor. Function
will be defined later. The bilinear applicatign, —1 < a < 1, is defined by

0a(0U",0) = 03, “W(U") ~W(U") -0, (0, -D(U") + D(U") -3 ©

whereD(U*) andW(U*) are respectively the symmetric and skew-symmetric parteefelocity gradienflU*. Usually,
D(U~) is called the rate of strain tensor awU*) is called the vorticity tensor. Notice that the paramaterconsidered as
a dimensionless material slip parameter which interpslagtween upper convectea-f 1) and lower convective derivatives
(a= —1), the casa = 0 being the corotational case [25]. Finally, a usual choarettie functionf gives the PTT model
(see [19, 24)):

f(oy) =1+ E—ATrwa), (6)

el.

in whichk is a parameter related to the elongational behavior of thdeidotice also that the simple cabe= 1 provides
the Oldroyd-B model.

A Newtonian fluid obeys the classical law:
0Cisc = ZnViSC-D(U*)a (7)

wherer)yisc. corresponds to the Newtonian viscosity (often associatddassolvent).

The behaviour of a viscoelastic fluid is given by the balarfae@mentum equation, which reads (without body forces)
by introducing pressurp*:

aU* * * * M * *
p(w +U*-0uU >+Dp = div (ovisc+0el.)a (8)
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wherep is the mass density of the fluid. It can be rewritten as:

ou”* _
P (ﬁ +UT DU*) +0p* — NviscAU* — div oy = 0. 9)

It is usual in the Oldroyd-B model to introduce two new parteng a total viscosity numbet and a retardation
parameter instead ofyisc andne, such that

Nel.
= Nvisc. + and r= —————. 10
N = Nvisc. + Nel. Nvise + Mol (10)

Using the incompressibility assumption, the overall Systé equation is written as

p(gTL*J +U*-DU*) —n(1-r)AU*+0p* — divog =0, (11)
div U* =0, (12)

aoél * * * ok * * *
A 3 T U*-Oog +9a(0U", 0g)) | + f(0g,) 0g = 2nrD(U”). (13)

Choosing = 0 andr = 1 provides the classical Maxwell model.

3 Asymptotic analysis of the thin film flow equations for very snall elongation numbers

The space coordinates are denote@dyx;,z) or more simply by(x*,z*) with x* = (x7,X;). Letw be a fixed bounded
domain of the plang” = 0. The upper surface of the gap is definedzby: H(x*) (see Fig. 1)

By introducing characteristic lengtlasfor the domainwand# for the size of the gap, we can define the film thickness
ratio, the usual Deborah number and an elongation number

H
g="—
L

, De:)\—ﬂ and K:E. (14)
L r

The governing equations, Egs. (11)—(13), can be expreasdichensionless form in terms of the following dimension-
less quantities :

X* z u s
X:_7 Z:_7 ui:_la W:_7 (15)
L €L u €U
2
€°L €L u
p=p'—, o0=05—, t=t"—. (16)
nau ‘nu L

We now rescale the three classical numbers: the Reynoldbeuwhich characterises the viscous forces compared to the
convective ones, the Deborah number which highlights thstieity of the fluid and the elongation number. Let us introet

Re= PUL De— 2% and K-

; - . 17)

™| X
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Fig. 1. Physical domain
For convenience, we also introduce the normalized gap ifomct
H(x*)
h(x) = . 18
()= (18)

In all this section, as suggested by the title of the sectois, assumed to be very small, i. K.is of ordere (or less). The
Iength and velocity scaling, see Eg. (15), takes into actienthin film nature of lubricant flow. Scalings related to, Re
andK can be viewed as assumptions related to operating conditar which the present study is valid: Re dbel must be

of order zero with respect o As discussed in the introduction, the scaling on the pressud the shear rate is based upon
balancing principles that put forth the leading terms andlmarigorously proven to be valid (see [23]). By substitgtinese
dimensionless variables, see Eqgs. (15)—(17), into Eq3$-(13), we obtain the dimensionless governing equations.

The three components of the momentum equation, namely E}j.&fe written (the notation/dit denotes the convective
derivative):

6

dup 62u1 azul 1 02u1 1 ap
R _(1_r)<02+6x2 202 ) g
4 0011 601’2 }(301’3 -0
0%y o, € 0z )
duy 62U2 02U2 1 02U2 1 ap
Re— —(1- -
a r)< o2 "k 2oz ) o
1 00'1’2 60'2,2 160’2"3 .
__( 010X ez ) =0
dw w02 1 0%w 1dp
EReE_s(l_r)<a—x§+a—x§ 25 ) F %
1 0013 6023 16033
o 22233~
s(ax1+axz +s 62)



For smalle, these equations formally reduce to the following set ofadigns:

azul ap 601’3 .
_(1—r)—022 +6_x1_—62 —O,

0°u, 0p 0023

(19U Op 0023 19
(1—r) 2 +6xz 5 0, (19)
ap

2 Y

Due to the previous dimensionless procedure the free dimegcondition is preserved for the dimensionless vasable

dup Oux 0w
e T S | 20

oxy  Ox 0z ’ (20)
Concerning the constitutive law, the process is similaruagipns are written for the dimensionless quantities, then
passing formally to the limi¢ — 0, the following equations are obtained:

011+ De(1— 3)01,3% =0,

02+ De(1— a)oz,g% =0,

O33— De(1+a)(01 3aa_u +02360uzz) 0,

012+ D7(1 61)(0236a +013%) =0, @D
013+D7((1 3)033%—(1+ a)o1 zaa—uz—(l-i- )01,1%) = aauzl

023+ % ((1— a)os,s% - (Ha)cm% - (1+a)02,2%) = r%.

As an example, we provide a full equation of the whole systefie passing to the limit, namely the equation related

to the first diagonal term in tensor
-~ atO'll 011 011 011 aul aUZ aul ow
e | }+[u17+u2_+w_z]+[012(___)+013(52_86_X1)}

aul auz 6u1 ow 6u1 011 . 6u1
71+012(0_x1+6_xz)+013<8_+_)”+? 2 %

the asymptotic equation being obtained by consideringghag ine 1.

In this system, it is easy to see that coefficianis, 02 2, 033 andoy » can be expressed as a functiorogk, 02 3 and of the
velocity (ug, up). In addition, using the last two equations,s ando, 3 are expressed with respect to the velocity:

aul
o2 —2 Zzul 2 raup\?\
1+ De (1—a2)<(5) +(E) )
023 =

S Ee)
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For the sake of simplicity, let us denote bythe first two coordinates of the velocity vectar:= (ui,uz) and by G the
following two components of the stress tensor:=G0o1 3,02 3). The system can be written in the following form:

ou
2 r—
—(1—r)‘27‘2’—‘;—(23+mxp=o, with G= 9z

~2 o ||0U |2’
1+De (1—a)HaZH

ap (22)

=0
0z ’

) ow
diviu + 9= 0,

all the other components of the stress tensor being dirdetiyiced from Eq. (21).

Note that the first equation of Egs. (22) also reads

0 ([ gpouy
37 (ﬂeﬁa) = kP, (23)

with the (nonlinear) effective viscosity:

r

R =1—- .
Nei (X,2) =1 r+1+(1_a2)[7e2H%_;(x,z)H2

(24)

The vertical velocityw can be deduced from the horizontal veloaitiy the free divergence condition. Coming back to
the physical variables, we can check that Egs. (22) can bettenv

o awy
az* neﬁaz* - X*p?

op*
0z~

—0, (25)

with

adu*
0z

Nel.

V) = Nvisc. + ——5- ———.
r]eff(Y) r-]VISC. 1+)\2(1_a2)|y|2

VEE @

Let us remark that this model can lead to an ill-posed prokdsniong as the graph of functign— yneg(y) is not
monotone. It can be proved (see [26]) that as long &srG< 8/9, Egs. (25)—(26) have a unique solutionr I 8/9, then
existence or / and uniqueness may fail. Numerical expetisngsing the algorithm described in Appendix C show that non
convergence situations appear as long 2s8/9.

¢ |

4 A perturbation method for small elongation numbers

The scaling used to obtain Eq. (21) is related to an elongationber K whose magnitude is assumed to be the same
as the film thickness ratie. In that case this parameter does not contribute to the asyimproblem. If K is of order
zero with respect te, however small, it is possible to obtain an asymptotic peobin which the elongation number K does
appear. For the sake of simplicity, computations will bedader the infinitely long assumption (i. e. with a 2D flow in the
x1-direction) although the method can be extended to a full 8.flConsequently, results will be also given in the 3D case,
as a straightforward consequence of the previous analysis.



Under this assumption, whergoes to zero, Egs. (13) become:

~ ~ Ju
KDeady1(01,1+ 033) + 01,1+ De(1— 61)01,36—21 =0,
~ —~ Ju
KDeo33(01,1+ 033) + 033 — De(1+ a)01,36—21 =0, (27)
—~ ’Dve aul aul 0u1
KD 22l (1-a)0oss (1 our) _ du
e013(01,1+033) +013+ 5 (( a)033 37 (1+a)o11 62) ',

For the case = 1 (see [18]), which immediatly implies that 1 = 0, it is possible to give a simple analytic solution of
this system (see [19]) and in turn a 1D Reynolds equations iBhnot so easy in the present situation, as the material slip
parametea lies between-1 and 1. As a solution of Egs. (27) is known for=K0 (see Section 3), it is however possible to
get an approximate solution for small values of K by lineatian. Let us write

00;
i =01 K:0+K 6I2J K:0+O(K2)'

Differentiating the three equations in Eqgs. (27) with retpe K, we obtain

60'1’1
_ _ 0K _

1 De(1-a)a 0 3 —Deo11(011+033)
0 —-De(1+aa 1 2913 = | —Deo33(01,1+033)
—[%HTé‘d 1 Sél%é‘d oK —’D\JGO'1,3(O'1,1 + 0'3,3)

oK

K=0
in which whe have defined
. ouy
- E‘K:O' (28)

The right hand side of this system is known from Eq. (21) aad#tto be computed for K 0. Solving this system, we obtain

IETg. 2r263De a(De (1—a2)a2— 1) 09
0K k=0 (1+ De (1 a2)42)3
and deduce the following approximation for small K:
r 2r2d2I5veza(I5vez(1—a2)d2—1) :
013~ — : +K —> : a. (30)
1+ De (1-a?)a? (1+De (1—a?)a?)3

When dealing with a full 3D flow, computations lead to a stidfigrward adaptation and the shear stress rate reads:

( r 2r2s25e2a<5e2(1_a2>pz_1>> au
Gz~ —> —+K — : o
1+ De (1—a?)p? (14 De (1—a2)p?)3 0z
with
. oug 2 ouy 2
(%) (%) @y
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Consequently, the first equation of Egs. (25) also reads

0 ([ gouy
% (neﬁa) = Uxp,

where

r

neRff(sz) =1-r +

2
~2 PNL
1+ De (1-a) aZ(x,z)
2 2
25 a4 Del(1—a2) || %Y _
2r‘De a 3 (X,2) (De (1-a% 3 (%,2) 1)

(1+ De (1—a)

du
E (sz)

2) 3
This expression is valid as long as K is small. However, asrtagnitude of K is not known, this study aims at giving some
qualitative results about the influence of the elongatiomiper rather than quantitative results.

Relative effective viscosity — n%(y) is plotted versus log) for three different values of K, see Fig. 2. For=0,
we get the classical Rabinowisch law. ForK0.4, the overall shape of the curve does not change, the slapeat#ng as
K increases. For small values gfthe viscosity is smaller than the one defined in the clakBladinowisch law while it
becomes greater for large valuesyofFor K > 0.4, the overall shape becomes completely different, as tharghinning
effect tends to disappear. It is reasonable to think thap#murbation method is no longer valid. It is worth also ni@mng
that taking into account the elongation number in the effectiscosity law increases the range of the valuesfof which
the graph of the functiop— yr]f;ﬁ(y) is monotone. Then Egs. (25)—(32) taking into account anteddil elongation number
may have a unique solution even fogreater than 29 (see Section 5.2).

Note that in terms of real physical values, the effectiveasity reads

Nel. N 2kneLA%aly* (N3 (1 - a®)[y” ~ 1)

0 = Muice : -
Nett (V) = Nuisc 1+ A%(1— )|y (1+N(1-a?)|y?)®

(32)

0.8r

Nefi(Y)

0.4r

0.2 ; ;
-2 -1 0

1
log(y)

Fig. 2. Influence of the elongation correction on the relative effective viscosity as a function of the shear rate (@ = 0.8, De=0.5,r = 0.8)
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5 Numerical simulations

In the whole section, we present numerical results that baesm performed with data from Tab. 1. Although widely
discussed [27, 28], homogeneous pressure boundary aomelaiong the boundary of the contact area have been retained
for all numerical experiments with the exception of Test (&e Appendix B) for which an input flux is associated to the
supply groove of the device.

5.1 Nonlinear Oldroyd asymptotic model: a numerical simuldion

Fig. 3—4 have been performed with the data referred as Tgsts@e Tab. 1) with retardation parameter 0.8 and
Deborah numbeDe= 1.3 (notice that 3D profiles are presented in the unit cube wiherthird direction, which is orthogonal
to the shear plan, has been rescaled as z/h(x)). In particular,

— Fig. 3 (left) represents the pressure distribution in the fitm. More details will be given later on the effects of the
Oldroyd contribution on the pressure distribution.
— Fig. 3 (right) represents the distribution of the effectigecaled viscosity defined by

r

nRix,2) :=1—r+ T3 5. (33)
1+ (1—a?)De E(X’Z)

In the Newtonian case, the effective relative viscosityrisarmly equal to 1 ; in the Oldroyd model, velocity gradient
lead to a non-uniform distribution of the effective visdgsivhich varies from L-r to 1.

— Fig. 4 represents the distribution of the stress tensor comipts. More details will be given later on the effects of the
Oldroyd contribution concerning these variables.

5.2 Influence of the elongation correction

As previously mentioned, the range of validity for the rdttion parameter is wider using the elongation correction.
Numerical simulation referred as Test (B) (see Tab. 1) ptsghe following results. Pressure profiles are plottedign%-
for various parameters around the upper limi 8/9 witha= 0.2 andDe= 0.72. Let us recall that, for K= 0, the algorithm
cannot capture the solution as- 8/9 (as the problem is ill-posed). Fortunately, for 0.91, the choice K= 0.82 allows us
to get a solution (the problem becomes well-posed thanksst®T T correction), which can be compared to the solution of
the problem with values such &sK) = (0.88,0.79) and(r,K) = (0.88,0.00). Thus Fig. 5 presents the results related to the
pressure distribution, at least when the problem is wedleplo

Fig. 6—7 presents the results related to the stress comtsoaiethe shearing surface by focusing on the influence on the
elongation number: the value of K is moderate but leads tifségnt change in the shape of the stress profiles.

5.3 About the perturbation method with respect to the Debord number

As mentionned in the first section, a perturbation-asynipégproach has been proposed by J. Tichy [18] for the upper
convective Maxwell (UCM) modelg= 1,r = 1). Assuming a linear dependence with respect to the Delgaameter, it
is assumed that the (real) viscoelastic prespgeds related to the Newtonian o by the following relationship

Ppe = po-+ Dep'®, (34)
wherep(© is a corrective pressure. As soon8 is computed, it is possible to know the real pressure for amgliDe by an
elementary additive procedure. In the present situatioresponding to the casel < a< 1 and O< r < 1, it is noteworthy

that the previous expansion is not relevant (see Tab. 2jmastavith the numerical parameters presented as Test (€), se
Tab. 1). By selecting different values afintroducing the load

L:= //w p(x) dx, (35)

we prove numerically that, for all values of the retardafi@nameter which are less than 8/9, the difference of pressaan

. : ~2 =~ .
values between the non-Newtonian case and the Newtoniarbeasives as (De ) for small values oDe (see, for instance,
Fig. 8), i. e.

~2
Pg. = Po+De p®. (36)
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(A) (B)

Fig. 3-4, 9-10 Fig. 5-6-7
Fluid domain:
Domainw [0,1] x [0,1] [0,1] x [0,1]
Gaph(x) 1-0.8x1 1-0.8x;
Shear velocitys (1,0) (1,0)
Rheological data:
Retardation parameter 0.00~0.80 088~ 0.91
Deborah numbebe 130 072
Material slip parametea 0.80 080
Elongation number K @0 000~ 0.82
Boundary conditions: g=0 p=0
Numerical parameters:
Mesh numbers 4Q 20x 20 40x 20x 20
Artificial time stepd 103 104
Equilibrium parameterp/ 104 104

© (D)

Fig. 8, Tab. 2 Tab. 3
Fluid domain:
Domainw [0,1] x [0,5] [0,1] x [0,1]
Gaph(x) 1+H% +05H" (X —x1) 1-0.25%
Shear velocitys (1,0) (1,0)
Rheological data:
Retardation parameter 0.75~0.85 000~ 0.80
Deborah numbebe 000~ 2.50 000~ 1.80
Material slip parametex 0.80 080
Elongation number K @0 000~ 0.16
Boundary conditions: g=0 p=0
Numerical parameters:
Mesh numbers 40 20x 40 40x 40x 10
Artificial time stepd 103 104
Equilibrium parameter, /3 104 1073

Table 1. Numerical data (numerical parameters are related to the algorithm, see Appendix C)
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Fig. 3. Pressure distribution (left) and effective viscosity including Oldroyd contribution: (X1,X2,2) — neRﬁ(xl,xz,z) (right) in the linear
converging profile with r = 0.8, De=1.3anda= 0.8
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Fig. 4. Stress (X1,X2,2) — (011 — 033)(X1,X2,2) (left) and (X1,X2,2) — O13(X1,X2,2) (right) in the linear converging profile with
r=0.8De=13anda=0.8

Moreover, when the Deborah number is not too small, the qiedsehaviour of the pressure is not valid anymore, as
shown on Fig. 8. In this work, we emphasize that our model doégely on any assumption on the amplitude of the Deborah
number and a numerical solution can be computed withoutlsess restriction oDe, unlike J. Tichy’s work. Notice that
our results have been obtained with the same data as J. §ji@ddpted to the 2D case (J. Tichy's results are 1D), i. e. ina
domain(0,1) x (0,5).

r=025 r=050 r=075 r=080 r=0.85

H' =-08H"=-1| 1941 1893 1928 1947 1978
H' =-08H"=+1| 2128 1990 1985 1994 2008

Table 2. Order of convergence of the load with respect to the Deborah number, for small values of De

5.4 Influence of the parameters on the load

Numerical simulations, here referred as Test (D) (see Tabndestigate the influence of the retardation parameter
the Deborah numbée and the elongation number K over the load. For any valukefétardation parameternumerical
results highlight some general trend (see Tab. 3: for meelemdues oDe, then the load computed with the perturbation

13
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Fig. 5. Pressure distribution X3 — p(Xl,Xg), following the streamline Xg = D/2, in the (linear) converging profile. Influence of the
elongation number (other parameters are: a = 0.80, De = 0.72
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Fig. 6. Stress component X3 — (013) (Xl,Xg,ZO), following the streamline Xg := D/2 at the shearing surface Z° := 0, in the (linear)
converging profile. Influence of the elongation number (other parameters are: r = 0.88,a = 0.80, De=0.72)
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Fig. 7. Stress component X; — (011 — 033) (X1, X3, 2°), following the streamline Xg := D/2atthe shearing surface 2 := 0, in the (linear)
converging profile. Influence of the elongation number (other parameters are: r = 0.88, a = 0.80, De=0.72)

corrector (i. e. K=0.2-r in our simulation) is less than the load computed witk=10.0 ; then, wherDe becomes greater
than 1, the load computed with the perturbation correctgréster than the load computed with=<0.0.

6 Conclusion

Upper convective model (UCM) assumption is often retairmdstudying viscoelastic thin film flows. Deleting this
assumption, it has been possible to prove that for a connedimice of governing parameters, thin film flows based upon
an Phan-Thien Tanner / Oldroyd-B viscoelastic model candmeptetely described by a double Newtonian (modified) Ra-
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Fig. 8. Convergence of the load difference Lﬁé — Lo with respect to the Deborah number, with a retardation parameter r = 0.85and in the
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geometry H' = —0.8, H” = —1, and with a = 0.8. For small values of De, the slope of the graph is approximatively equal to 2

Loadk1le+3 r=02 r=05 r=08

De=0.0 75.45(+00.00) 75.45(+00.00) 75.45(+00.00)
De=0.2 75.21(-00.23) 74.84(-00.80) 74.35(—01.93)
De=0.5 7364 (—-0162) 6866(—04.18) 6344(—06.91)
De=0.38 70.32(—01.00) 59.92(—0238) 48.39(—03.46)
De=12 66.67(+01.12) 50.25(+03.47) 30.69(+07.98)
De=15 64.86(+0213) 4557(+06.12) 22.03(+13.10)
De=1.8 63.67(+0246) 4264(+06.84) 16.98(+14.14)

Table 3. Load in the viscoelastic case for various values of I and De. For each set of parameters, the entry corresponds to the load without
elongation correction i. e. K = 0.0 (resp. load deviationdue to the elongation correction K = 0.2-r)

binowisch effective viscosity law. Using a new algorithmflience of the various parameters has been described for the
pressure and for the stress tensor. The detailed distribofithe viscosity in the contact area has been presenteshands

that shear thinning effect takes place even for very modesperating conditions. Further non linear effects due & th
elongation numbers can be taken into account by way of afation method, so leading to a modified Rabinowisch law.
As a consequence, a reduction in the load capacity is olatdoresmall Deborah numbers while a load increase is gained
for greater Deborah numbers.

Acknowledgments : Authors are grateful for various discussions with B. BoudZand P. Vergne, from INSA Lyon.
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In the appendix, we present some complementary results dath presented on Tab. 4.

A Influence of rheological parameters in the asymptotic mode
A.1 Influence of the retardation parameter .

Fig. 9-10 focus on the influence of the retardation paranogténe solution. The Deborah number is takeDas- 1.3.
Other data are presented in Tab. 1 (see Test (A)). Startarg the pressure of the Newtonian problem with viscosity 1
(r = 0), we can observe that the solution highly depends@omputations cannot be performed for values greater tji@n 8
due to ill-posedness of the problem and, consequentlycoorergence of the algorithm). The pressure tends to desesa
the retardation parameter increases ; elastic effectadstify in a significant way the shear stress located at tharstgp
surface, thus suggesting that the rheological properiasyas the retardation parameter) are among the majondetatts
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(E) )
Fig. 11-14 Fig. 15, Tab. 5

Fluid domain:
Domainw [0,1] x [0,1] [0,1] x [0,1]
Gaph(x) 1-0.8x1 1—(1—Hmin)X
Shear velocitys (1,0) (1,0)
Rheological data:
Retardation parameter 0.80 070|0.30
Deborah numbebe 000~ 0.72
Material slip parametea 0.80 080
Elongation number K @0 000
Boundary conditions: g0 p=0
Numerical parameters:
Mesh numbers 40 20x 20 80x 20x 40
Artificial time stepd 103 104
Equilibrium parameterp/d 104 104

(G)

Fig. 16

Fluid domain:
Domainw [0,1] x [0,5]
Gaph(x) (2 —1)2+0.5
Shear velocitys (1,0)
Rheological data:
Retardation parameter 0.00~0.70
Deborah numbebe 130
Material slip parametea 0.80
Elongation number K @0
Boundary conditions:
Conditions atx; =0 flux

Conditions on other boundaries p=0

Numerical parameters:
Mesh numbers

Artificial time stepd

Equilibrium parameter,/d

40 80x 20
104
104

Table 4. Numerical data
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of the lubricants efficiency.

—=—r=0.0
- r=0.8

0 0.25 0.5 0.75 1
X1

Fig. 9. Pressure distribution X3 — p(Xl, X2) following the streamline X2 D/2 in the (linear) converging profile with De 1.3 and for
different values of the retardation parameter r = 0.1, 0.2, ...,0.8

(011-033)(X1,X8,20)

—=— r=0.0
-~ r=0.8

-~ r=0.8

0 0.25 0.5 0.75 1 0 0.25 0.5 0.75 1
X1 X1

Fig. 10. Component of the constraint tensor X; — 013(X1,Xg, 2) (left), X, — (011 — O33) (Xl,Xg,ZO) (on right) following the streamline

Xg := D/2 at the shearing surface 2 := 0, in the (linear) converging profile with De = 1.3 and for different values of the retardation
parameter = 0.1,0.2, ...,0.8

A.2 Influence of the Deborah number and material slip parameer
Let us remark that, in Eq. (26), the Deborah nuniberand the materlal slip parametecan be reduced into one single

parameter, as the effective viscosity law only depends erpshlameteDe (1—a?) (of course, this does not hold anymore
when taking into account the influence of the elongation nemyibe. K+ 0). Therefore, we choose to impaose- 0.8 and

let De vary from O to large values. In that prospect, Fig. #4lfetus on the influence of the Deborah number. The numerical
experimentis referred as Test (E) (see Tab. 4). The retardaarameter is taken as= 0.8. Starting from the pressure of the
Newtonian problem with viscosity D(e 0), we can observe that increasing the valuBefends to decrease the pressure,
until converging to a pressure which is identified to the Sofuof the Newtonian problem with viscosity-1r. In a similar
way, we would observe that the behaviour of the shear strgssbeys the same trend (therefore, the corresponding figure is
volunteerily omitted): increasing the value of the Debanamber leads (in a monotone way) the initial solution (Nevida
solution with effective viscosity uniformly equal to 1) tdienit solution identified as a Newtonian solution with effive
viscosity 1—r, the path being nonlinear due to elastic effects. Howewegeddency with respect to the Deborah number
may not be monotone, as foi; — 033, see Fig. 12-14. In both Newtonian regim%& 0 andDe = +00), the computation

of the solution leads to1; — 033=0 atxg =D/2, 2% = 0, but the path between those two regimes is the following one

— Fig. 12 shows that, in the chosen configuratiom, — 033(-,xg,z°) decreases with respectﬁ for small values obe
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only;
— Fig. 13 reveals the change of the trend: monotonicity fdilstermediate values de ; -
— Fig. 14 shows that, in the chosen configuration,— 033(~,x(2’,z°) increases with respect e for large values obe.

—=— Deborah=0.0
—v— Deborah=+w

0 0.25 O).(S 0.75 1

Fig. 11. Pressure distribution X3 +— p(Xl,Xg), following the streamline Xg = D/2, in the (linear) converging profile with r = 0.8 and for
different values of the Deborah number De= 0.1, 0.2, ...,5.0

A.3 Effective viscosity in the Oldroyd-B thin film flow

In this subsection, we study the influence of the Oldroyd-Riel@n the effective viscosity. Numerical parameters are
presented in Tab. 4, referred as Test (F). In this non-Neatoregime, we have focused on a flow which is compressed in a
linear profile, the maximal gap being fixed to 1, the minima gl varying from 0.90 to 0.01.

From the equations, we infer that the effective viscositgiesafrom 1—r and 1. Fig. 15 illustrates the distribution
of the three-dimensional effective viscosity within th@dhetical range, for different values bfy,. It is observed that
decreasing values &fyin tend to spread the distribution. More precisely, high viéyogradients, here associated to minimal
gap thickness, lead to reach the minimal effective visgosatrge values o, are not sufficient to cover the whole range
of values, although small valuesldf,i, widen the range of values and tend to spread the distribtrbomthe minimal value
to the maximal one. This is mainly due to the fact that smdlies ofHin lead to high velocity gradients, thus diminishing
the effective velocity. This is also represented by Tab. &tviprovides the mean value of the effective viscosity in3be
domain, the standard deviation with respect to this meamevahd the numerical range which is reached.

Hmin | meanvalue standard deviation min. value max. value
0.90 0.848 0.010 0.806 0.884
0.50 0.775 0.078 0.434 0.970
0.20 0.689 0.170 0.314 1.000
0.10 0.664 0.214 0.304 1.000
0.05 0.658 0.233 0.301 1.000
0.01 0.643 0.243 0.300 1.000

Table 5. Heterogeneity of the effective viscosity distribution in the viscoelastic fluid flow (r = 0.7, De = 0.72, a = 0.8), depending on the
converging profile
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Fig. 15 represents the same computation, adapted to thdimensional average effective viscosity, defined as

_ h(x)
500 = s [ nEkx2 e (37)

in order to give some comprehensive details on the effeets@sity associated to the thin film flow. Although the effee
viscosity distribution significantly reaches values gee#than 0.9, the average effective viscosity never reaakas\salues.
This means that the effective viscosity is not homogenewtisd thin film thickness direction. It also means that vaoiat
of velocity gradients (associated to the measure of thetfieviscosity) may be important in the thin film thickneasleast
for small values of the gradients. As a consequence, thsatsithe heterogeneous properties of the viscoelasticfftwid
with respect to the direction orthogonal to the shearingpser(i. e. in the thin film thickness).

B Boundary effects due to elastic perturbation

Fig. 16 represents the pressure distribution for diffevaftes of the retardation parameter. The geometry relies on
converging-diverging profile (see Tab. 4, Test (G)) with mposed fluxq = 0.2sh(0,-) atx; = 0. The dimensions of the
domain fall into the scope of the journal bearing of infinitielth assumption, as€ xj < 1 and 0< x; < 5. In the Newtonian
regime, it is observed that the infinite width approximati®ralid, leading to the use of 1D reduced models instead of 3D
initial systems ; in the non-Newtonian situation, the nuc@rresult suggests that such an assumption may be not valid
anymore when the retardation parameter becomes too large.

C Numerical algorithm

This method is based on a fixed point procedure. The first gl&mdonsider that the unknown velocity-pressure)
(solution of Egs. (25) and (26) or, if considering the PTTreotion, Egs. (25) and (32)) can be computed as the limit as
tends to infinity of a sequenden, pn) solution of

agz <F(u“l)aa—uzn> =0p", div</0H u”(-,z)dz) =0, (38)

in which functionF is related to the viscosity law, namely

r

Fluy=1-r+ L
14D (1-a2) |
0z
without the PTT correction, or
r
Fluy=1-r+ 5
14D (1-a2) | U
0z
2 2
r2petal| Y (Dez(l—az) ou —1)
0z
3 9
Ju

—~2
1+De (1-2a°
<+ e(l-a) 3

)

In turn, (un, pn) are computed for each value of the indeas the limit of the solution of a fixed-point problem (intro-
ducing new indexX).

with the PTT correction.

0 aun,k+1 H
— <F(u”1)7> = Op™k, phil p”’k+6div</ u”(-,z)dz) =0, (39)
0z 0z 0
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in which d is an artificial penalization parameter.

In order to solve Eq. (38), a semi-discretization in (ke x2)-direction is introduced. We use a centered structured grid
based on a classical cell configuration (see Fig. 17, fortangalar domain with a size x D).

Let us denote bjd = N; x Ny the overall number of unknowns corresponding to this difgaton, byd; (resp.dy) the
step in thex; (resp.x») direction, byh;; the value oh at a nod€(i, j). Furthermore, we denote

U(Z) (Uij(2)) == (u(idy, [0x,,2))
(pju) (P(idxy, jOx,)) (40)

the semi-discretized horizontal velocity and discretipegssure.
Let A (resp.B) correspond to the-discretisation of the operatar (resp. div). We use the notation

(HU)” = /Ohij ujj(z)dz (41)

The overall procedure reads now:

Un,O _ Un’ PnO pn

0 aun,k+1
- (F(U“) +AoP™ =0,
Loops onn:{ Loops onk: 0z 0z
Pkt _pnk 5B (H U”"“) 0,

Un+1 yn® pn+1 pn.e

This internal problem is a linear one as the computation efrtéw pressur@™<** is an explicit procedure while the
computation of the velocity™<*! is obtained by solving a set of ordinary partial differehéiquations in the—direction,
which is equivalent to solve a linear system of equatiorer afdiscretization in the—direction (N, nodes).

The stopping test of the internal loop is based on the pressuorP™kt1 — Pk and on the velocity errdg™<+1 — Unk,
Note that the precision sought in pressure will induce aipi@t on the incompressibility condition via the parameier
In fact, the algorithm is stopped as soon|B&*** — P"X| is smaller than a prescribed value, notgd If this condition is
satisfied, it means in particular that the divergence tertinfgss

ma| (B2 (HU™)), | <3 “2)

i. e. the free divergence equality is satisfied with an order,@d. For this reasomp/d will be called the “equilibrium
parameter (for the free divergence condition)”. In ordentmerically attain the free divergence equality, we havefmose
some value for satisfyingrp < 0.

Numerical experiments show thét= 102 andr = 1043 ensure good convergence fér = 40, N, = 40 andN, = 20,
see [26].
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(011-033)(X1,X8,29)

—=— Deborah=0.00
_,ll—»— Deborah=0.50

0 0.25 05 0.75

Fig. 12. Stress component X3 — (011 — 033) (Xl,XO,ZO), following the streamline Xg := D/2 at the shearing surface 2 :=0, in the
(linear) converging profile with r = 0.7 and for different values of the Deborah number De = 0.00, 0.17, 0.33, 0.50

(011-033)(X1,X8,20)

—=— Deborah=0.50
3|l Deborah=1.15

0 0.25 O).(S 0.75 1

Fig. 13. Stress component X3 — (011 — 033)(X1,X3,2°), following the streamline Xg := D/2 at the shearing surface 2 := 0, in the
(linear) converging profile with r = 0.7 and for different values of the Deborah number De = 0.5, 0.65, 0.80, 0.95, 1.15

oF

(011-033)(X1,X3,20)

—=— Deborah=1.15
3l Deborah=+c

0 0.25 0.5 0.75 1
X1

Fig. 14. Stress component X3 — (011 — 033)(X1,X2,ZO), in the (linear) converging profile with r = 0.7 and for different values of the
Deborah number De=1.15, 1..33, 1.50, 1.60, 3.33, 5.00; +0
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Fig. 15. left: Percentage distribution of the effective viscosity in the three dimensional thin film flow, for different values of Hmin, in a
non-Newtonian regime (De = 0.72,r = 0.7 and a = 0.8). right: Percentage distribution of the averageeffective viscosity in the two
dimensional thin film floyfor different values of Hypin, in a non-Newtonian regime (De=0.72 r = 0.7 and a = 0.8). Effective viscosity

varies from1—rto 1
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Fig. 16. Pressure distribution in a converging-diverging profile (from top left to bottom right): r = 0.0,r = 0.2, r =0.5and r = 0.7,

obtained with De=1.3anda = 0.8
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Fig. 17. Spatial discretisation and position of the unknowns pjj, Ujj = (ui,- ,Vij)
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