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Viscoelastic fluids in thin domains: a mathematical proof

Guy Bayada!'? Laurent Chupin® and Bérénice Grec®"
Batiment Léonard de Vinci - 21, avenue Jean Capelle
69 621 Villeurbanne cedex - France

Abstract

The present paper deals with non Newtonian viscoelastic flows of Oldroyd-B type in thin
domains. Such geometries arise for example in the context of lubrication. More precisely, we
justify rigorously the asymptotic model obtained heuristically by proving the mathematical

convergence of the Navier-Stokes/Oldroyd-B sytem towards the asymptotic model.

Keywords: Viscoelastic fluids, Thin film, Oldroyd model, Lubrication flow, Asymptotic

analysis.

1 Introduction

This paper concerns the study of a viscoelastic fluid flow in a thin gap, the motion of which is
imposed due to non homogeneous boundary conditions.

When a Newtonian flow is contained between two close given surfaces in relative motion, it is
well known that it is possible to replace the Stokes or Navier-Stokes equations governing the fluid’s
motion by a simpler asymptotic model. The asymptotic pressure is proved to be independent
of the normal direction to the close surfaces and obeys the Reynolds thin film equation whose
coefficients include the velocities, the geometrical description of the surrounding surfaces and
some rheological characteristics of the fluid. As a following step, the computation of this pressure
allows an asymptotic velocity of the fluid to be easily computed. Such asymptotic procedure
first proposed in a formal way by Reynolds [2] has been rigorously confirmed for Newtonian
stationary flow [1], and then generalized in a lot of situations covering numerous applications for
both compressible fluid [14], unsteady cases [3], multifluid flows [15].

It is well known however that in numerous applications, the fluid to be considered is a non
Newtonian one. This is the case for numerous biological fluids, modern lubricants in engineering
applications due to the additives they contain, polymers in injection or molding process. In all

of these applications, there are situations in which the flow is anisotropic. It is usual to take

INSA-Lyon - Institut Camille Jordan - CNRS UMR 5208

2INSA-Lyon - LAMCOS - CNRS UMR 5259

3Ecole Centrale de Lyon - Institut Camille Jordan - CNRS UMR 5208

“E-mail: berenice.grec@insa-lyon.fr, Tel: +33 4 72 43 70 40, Fax: +33 4 72 43 85 29.


http://hal.archives-ouvertes.fr/hal-00340253/fr/
http://hal.archives-ouvertes.fr

hal-00340253, version 1 - 20 Nov 2008

account of this geometrical effect in order to simplify the three-dimensional equations of the
motion, trying to recover two dimensional Reynolds like equation with respect to the pressure
only. Such procedures are more often heuristic ones. Nevertheless, some mathematical works
appeared in the literature to justify them. They include thin film asymptotic studies of Bingham
flow [9], quasi Newtonian flow (Carreau’s law, power law or Williamson’s law, in which various
stress-velocity relations are chosen: [7], [6], [16]) and also micro polar ones [5]. It has been possible
to obtain rigorously some thin film approximation for such fluids using a so called generalized
Reynolds equation for the pressure.

However in the preceding examples, elasticity effects are neglected. Introduction of such
viscoelastic behavior is characterized by the Deborah number which is related to the relaxation
time. One of the most popular laws is the Oldroyd-B model whose constitutive equation is an
interpolation between purely viscous and purely elastic models, thus introducing an additional
parameter which describes the relative proportion of both behaviors. A formal procedure has
been proposed in [4]. However, the asymptotic system so obtained lacks the usual characteristic
of classical generalized Reynolds equation as it has not been possible to gain an equation in the
asymptotic pressure only. Both velocity u* and pressure p* are coupled by a non linear system.

It is the goal of this paper to justify rigorously this asymptotic system. Section 2 is devoted to
the precise statement of the 3-D problem. One difficulty has been to find an existence theorem for
the general Oldroyd-B model, acting as a starting point for the mathematical procedure. Most of
the existence theorems, however, deal with small data or small time assumptions. To control this
kind of property with respect to the smallness of the gap appears somewhat difficult. So we are
led to consider a more particular Oldroyd-B model, for which unconditional existence theorem
has been proved [13]. Moreover, a specific attention is devoted to the boundary conditions to be
introduced both on the velocity and on the stress. The goal is to use ”well prepared” boundary
conditions so as to prevent boundary layer on the lateral side of the domain.

In Section 3, after suitable scaling procedure, asymptotic expansions of both pressure, viscosity
and stress are introduced, taking into account the previous formal results from [4]. Section 4 is
mainly concerned with the proof of some additional regularity properties for the formal asymptotic
solution. Assuming some restrictions on the rheological parameters, it will be proved that it is
possible to gain a C* regularity for p* , k > 1, which in turn improves the regularity of v* and the
stress tensor o*. This result is obtained by introducing a differential Cauchy system satisfied by
the derivative of p*. Finally, section 5, is devoted to the convergence towards zero of the second
term of the asymptotic expansions, which in turn proves the convergence of the solution of the

real 3-D problem towards u*, p*, o* (Theorems 5.4 and 5.6).

2 Introduction of the problem and known results

2.1 Formulation of the problem

We consider unsteady incompressible flows of viscoelastic fluids, which are ruled by Oldroyd’s law,

in a thin domain Q° = {(z,y) € R",z € w and 0 < y < eh(z)}, where w is an (n — 1)-dimensional
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domain, with n =2 or n =3 (z = x; or x = (x1,22)), as in Figure 1.

Figure 1: Domain Q.

The following hypotheses on h are required:
Ve ew, 0<hy<h(z)<h§, and h®eCl@).

Let u® = (uf,d5,a5) be the velocity field in the three-dimensional case, or u® = (4§, 45) in the
two-dimensional case, p° the pressure, and ¢ the stress symmetric tensor in the domain Qe.
Bold letters stand for vectorial or tensorial functions, the notation f corresponds to a function f

defined in the domain OF , and the superscript ¢ denotes the dependence on .

~

Formulation of the problem The following formulation of the problem holds in (0, c0) x Q°:

pOE +p U VA — (1 — v A4 +VHE = V-6°,
Voas = 0, (2.1)
A (8,65 + 4° - V6 + g(65,Vaf)) +6° = 2rvD(4f),

where the nonlinear terms g(6°, Vu®), the vorticity tensor W (4®) and the deformation tensor

D(4°) are given by:

§(6°, Vi) = ~ (@) - 6° + 6° - W (@),
ne _ txgne ~c txone
W) = Y4 = Vi - VO nd D) = Ye Ve

In this formulation, the physical parameters are the viscosity v, the density p, and the relaxation
time A. The parameter A is related to the viscoelastic behavior and the Deborah number. The

parameter r € [0,1) describes the relative proportion of the viscous and elastic behavior.
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Initial conditions This problem is considered with the following initial conditions:

t=0 = U5, 0|0 = 05, (2.2)

for u§ € L*(QF), 5 € L*(€). The bold notation L2(QF) denotes the set of vectorial or tensorial

functions whose all components belong to L?(Q).

Boundary conditions Dirichlet boundary conditions are set on top and bottom of the domain,

and the conditions on the lateral part of the boundary f"fL, defined by
15 = {(z,y) €ER",z € dw and 0 < y < ch(z)},

will be specified later (in section 4.2). Therefore, it is possible to write the boundary conditions

in a shortened way:
Uy = J°, (2.3)

where J¢ is a given function such that J¢ € H'/2(9Q¢) and satisfying j5|y:hs =0, J° ly=0 = (s,0).
This function will be fully determined in Subsection 4.2.
Since 6° satisfies a transport equation in the domain (¢, it remains to impose boundary conditions

on 6° on the part of the boundary where 4° is an incoming velocity. Let us define fi the part
of T such that J¢|.. -n <0, and I =T \f’i We set

rg
6°|p. = 6° 2.4
‘F+ ’ ( )

where 6° is a given function in H1/2 (fi) which will also be determined in Subsection 4.2.

Moreover, since the pressure is defined up to a constant, the mean pressure is chosen to be zero:

[ 5 =o.
Qe

Notations Let us introduce the following function space:
v—{¢eH¥), V- p-0},

and the following notations, that will be used in the following. For f defined in Q°:
e |f| denotes the L2-norm in QF,

° \f\p denotes the LP-norm in ¢, for 2 < p < +o0,

e the spaces Cm(§) for m > 1 are equipped with the norms || f|lem = |flee + > [f@|so.
i=1
For f defined in R x Q, HfHLa(LB) denotes the norm of the space L*(0, 00, LP(¥)), with

1<a, <00
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2.2 Existence theorem in the domain ¢

Theorem 2.1. For e > 0 fized, problem (2.1)-(2.3) admits a weak solution
af € L}.(0,00, HY(QF)), p° € L}.(0,00, L2(Q°)), &° € C(0,00, L*($¥)).

Proof. This result is proved in [13]. O

Remark 2.2. Let us emphasize that for the following, it is essential to know the global (in time)
existence of a solution for problem (2.1)-(2.3). Other existence theorems have been proved for this
problem, for example in [12], [11], [10], but these theorems are either local in time (on a time
interval [0,T¢]), or a small data assumption is needed. In this work, these theorems cannot be
used, since there is no control on the behavior of T¢ (or equivalently of the data) when € tends to
zero, in particular T may tend to zero.

Consequently, this work is restricted to the specific case treated in [13], taking one parameter of
the Oldroyd model to be zero. In all generality, the non-linear term reads g(o,Vu) = —W(u) -
oc+o-W(u)—a(o-D(u)+ D(u) - o), which is called objective derivative. Here the parameter

a 1s taken to be zero. This case corresponds to the so-called Jaumann derivative.

Remark 2.3. The following computations are made in the two-dimensional case (i.e. w =
(0,L) is a one-dimensional domain) for the sake of simplicity. However, note that except for
the regularity obtained for the limit problem in Section 4.3, all estimates are independent of the

dimension, thus the corresponding computations should apply to the three-dimensional case.

Regularizing the system In the proof of the preceding theorem, the existence of a solution is
achieved by regularization. Therefore, this study only concerns solutions obtained as the limit of
a regularized problem approximating (2.1), in which an additional term —nAg*" is added to the
Oldroyd equation, with n > 0 a small parameter. Here a regularization of the form —nA (<" — G’)
is chosen, with G a symmetric tensor in H Q(Qe ) independent of n and e which will be precised
later. After obtaining the needed energy estimates uniformly in 7, we will let 1 tend to zero. This
approach allows to multiply the Oldroyd equation by 6¢", since 6°" is regular enough. Of course,
one can choose another regularization which leads to energy estimates which are uniform in the
regularization parameter.

Furthermore, because of the regularizing term, boundary conditions on the whole boundary are
o0 = 6", where 6" is now a function of H/2(9)F), which will be

determined later by equation (4.3).

needed. Let us write 6°"
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3 Asymptotic expansions

3.1 Renormalization of the domain

Introducing a new variable z = y, the system (2.1) can be rewritten in a fixed re-scaled domain:
€

Q={(z,2) eR" z cwand 0 < z < h(z)}.

For a function f defined in QF, f is defined in O by flx,z) = f(:n,sz). For a function f € LP(Q),

|f|p still denotes the LP-norm in 2, and similar notations hold for the other norms. Moreover,

o 5N
the regularizing term nAo*” is introduced. Denoting " = < 57 37), and similar notations
12 022

for the components of G, it holds in (0, 00) x € :

p oui" — (1 —r)v Acui" + 9pp™" — Oy07] — 6 o8 =
p ous” — (1 —r)v Auy” + éazpsn — Oyoil — 8 0o =
Ve u=0,

A (5#7[{? N (u ‘712)> +oi{
A <5t0ig + §N( u ol — 033)) + o078 — nAc(o5s — G12) —rv <(9 usy! + é@zuin> =0,

—nAc (o] — Gi1) — 2rvo,u]" =0,

A (5250;2 + N(u" 0617)> + 050 — nA: (059 — Gag) — 2rv— (9 Lus' =0,
(3.1)

where the convective derivative d; is given by §; = 9y + u®" - V.. The derivation operators are

1 1 -
defined as follows: V. = ((9;,3, g@z> and A, = 02 + 6—262 The non-linear terms N are given by

N ) = (022~ T ) 1.

3.2 Asymptotic expansions

It has been proposed in [4] that when 71, ¢ tend zero, (u®7,p*", o") tends formally to a triplet
(u*, p*, o*) satisfying a system that will be given later in (4.1). This analysis leads to the intro-

duction of the following asymptotic expansions:

ul’ = uj + 0" and uy" = euj + evi", (3.2)
1, 1

p€77 — E_Qp + €_2q577’ (33)
1 1

0-677 = _o'* + —Tan’ (34)
€ €

* en 577
012 029 T2 T2

(3.2) becomes u®" = u* + v

The scaling orders chosen for the pressure and the different components of the velocity field and

* * 577 577
o, o
. «_ [011 %12 en _ [ T11 (% €N (€N €N
with o* = ( X ), and 77 = < ) If denoting w* = (uf, u3), and v = (v{",v5"),
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of the stress tensor are motivated by some mathematical and physical remarks. Classically, the
pressure has to be of order 1/e? if the horizontal velocity is of order 1 (see [2] for the rigorous
explanation). On the other hand, the stress tensor has to be of order 1/¢ and the Deborah
number A of order ¢ in order to balance the Newtonian and non-Newtonian contribution in
Oldroyd equation (see [4]). Hence; let A = ™.

A wise choice of the function G in the regularizing term is G = o*. The regularity of G in
H?(Q) is proved by Theorem 4.4 (where it is proved that 926* € C°(Q), 0,0.0* € C°(Q) and
020* € CH(Q), thus Ae* € L*(Q)). A formal substitution of (3.2), (3.3), (3.4) in (3.1) leads to

the following system:

1 1 1
pdwiT — (1 —r)v An]" + —@qun — gafo? -3 — 0,7y = L677 + 01 —|— Cl,
1 1
p dws” — (1 —r)v Avy + azq (9;,37'{:;7 - 83@ Tao = —2L§77 + €—3C’2 + 8—405,

V-vT=V . u",
A" (diri] = N (o™, m3) + 7'11 nATyy = 2rvd0)” = L] + L/leln’
1 1 - 1~
I <dt7'1€g i §N(v T — 7-22)> + 7-12 NAT) — TV <8mv§” + gazv§n> = L]+ gL’me

1 2rv 1.
AT (dimyg + N (™, 7)) + TZ2 ATy — Taz vy! = L + EL,QEQU,

(3.5)

with the following notations: d; = 0; +v°"-V is the so-called convective derivative, the non-linear
1

terms N (v, f) = (68;,;1)377 - —82v§77> f for f € L?(Q2) and the following linear (with respect to
€

v®") and constant terms

L = —p v -Vl — p u* - Vol —p O} — p u* - Vui + (1 — r)wdui,

£3"
C = amafl,
Ci=(1- T)l/aguf — Opp™ + 0,07;
L3 = —p 20" - Vuh — p 2u* - V3
g ’

— p 20l — p E2ut - Vuh + 2(1 — r)wdus + (1 — r)vd?ul + 0,07,
CQ - 830';27
Clh = d,p*.

For the Oldroyd equation, the following linear (with respect to v and 7) and constant terms

appear:

ii? :E?f + A" (=00]; —u* - Voi| + edyus07y) + 2rvoul,

. EN __ yx *, €N en _x * * en
with L7 = X\ (e0yu5y + €050 019 — v - Voi, —u* - V1),
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Tlen __ * * __EN EN __* * * % *
L' = =X (0uimyy + 001" 07y) —A"Oujoly — o7y;

'
L5) =L50 — \* (01059 + u* - Vb + c0,u307) + 2rvd,ulb,
with  L£50 = =\* (e0,usTiy + €0v2079 + V- Vosy +u* - V15)),

1677_ * *__EN N _* *
Loy = X" (0.ujTyy + 0] 012)4‘)‘ 0.ui07y — 059

rem
‘622
*

~ A
Lig = T (gaqu(Tf? 7'22) + €0 U2 (011 0%9) 4 20°" - Voiy + 2u™ - Vng)

en
Lig
*

A
5 (204075 + 2u™ - Voiy + Opus(0]] — 059)) + rved,us,

* *

LYy = (8 ui (i) — 739) + 0:v1" (0] — 039)) —i-?@u;(afl — 059) — 0o + Tv0,u7;

rem
‘612

Note that the first order derivatives of o* occur in the terms L7 and C¢". It will be shown in

Theorem 4.4 that o* has sufficient regularity.

Let us observe also that equations (3.5) are similar to (3.1), except for the linear terms on the

right. Thus the energy estimates will be obtained similarly for both systems, multiplying Navier-

Stokes equation by the velocity and Oldroyd equation by the stress tensor, and integrating over

Q.

4 Limit equations

4.1 Limit system

In an heuristic way, the following system of equations satisfied by u*, p*, o* is infered from (3.5):

u*, p*, o* are steady functions solutions of:

(

(1 — r)vd*ul — Opp* + 0,074 = 0,
d.p" =0,

V-u* =0,

)\*Bfu’{ai‘g +07, =0,

* * * * *
—Eazul(an — 039) + 01y = rv0,uT,

* )k *
A azu10'12 + T99 = 0.

(4.1)
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This system is equipped with the following boundary condition (Dirichlet condition on the upper

and lower part of the boundary, flux imposed on the lateral part of the boundary):

u* =0, for z = h(z),
u* = (s,0), for z =0, (4.2)
h(x)

[ u*dz-n=%®; only.

0

The compatibility condition reads [ ®; = 0. Moreover, since p* is defined up to a constant, the
Ow

mean pressure is taken to be zero: [ p* = 0.
Q

Remark 4.1. Each equation of the preceding system (4.1) is obtained by cancelling the constant

part (i.e. the part independent of v=", ¢°", 7°") of respectively C}, Ch, V -w*, L], L', L.

4.2 Determination of the boundary conditions

Remark 4.2. The lateral boundary conditions on u* do not depend on the ones on ut", but only
on the flux. Therefore, different boundary conditions on u®" corresponding to the same flux lead to
the same limit problem. This is a classical fact when passing from a two-dimensional problem to
a one-dimensional problem (or similarly from a three-dimensional problem to a two-dimensional
one), and has already been observed in [2] for example. Here, in order to avoid boundary layers,
u®" = u* is imposed on the lateral part of the boundary.

Similarly, any value of 0" on the boundary leads to the same limit problem. Again, in order to

avoid boundary layers, well-prepared boundary conditions are also chosen for o©.

The preceding remark allows to define precisely the function J¢ introduced in (2.3). Since
u*|p, € HY?(T'p), it is possible to construct J* € H'/2(9Q) satisfying J¢|,—, = 0, J%|.—g =

(s,0) and J¢|r, = u*|p,. Therefore, the boundary conditions on u*7 become

u =0, for z = h(z),
u = (s,0), for z=0,

ul=u onI'y.

Thus u®"|50 = u*|9q, and v will satisfy zero boundary conditions: v*"|5q = 0.
Moreover, since o* € H'(Q) (see Theorem 4.4 for this regularity result), 85 can be defined as

follows:
0° = o*|r, € H/*(T,). (4.3)

Therefore

olr, =o"|r,,

and this implies that 7¢"|r, = 0.
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On the other part I'_ of the boundary, " is chosen such that o7 -n|p_ = * -n|p_, for example

ol =o*|p_.

4.3 Existence of a solution to the limit problem
System (4.1)-(4.2) has already been studied in [4].

Theorem 4.3. Assume that r < 8/9. Then system (4.1)-(4.2) has a unique solution satisfying
u* € L*(Q), d.u* € L*(Q), p*c H'(w), o € L*(Q). (4.4)

Proof. This result has been proved in [4]. O

This existence result is not sufficient for this study. Therefore, the following stronger regularity

result is proved on the limit problem (4.1)-(4.2).

Theorem 4.4. Assume r < 2/9. If h € H*(w), for k € N*, then the unique solution (u*,p*,o*)
of the system (4.1)-(4.2) satisfies

p*eCH @), i, d.ui, 0Pu € CMHQ), o, 0.0" € CFTLQ),
pul € CHQ),  ub, 0.ub,0%uf € CF(Q), 80" € CFQ), (4.5)
dpul € CFL(Q).

Proof. Let us observe that system (4.1) can be expressed as a system on uj, p* only. Using (4.1),
011, 055 can be expressed as functions of o}, and 0,uj. Indeed, from the fourth and the last
equations of (4.1), it holds that

Moreover, the divergence-free equation can be rewritten in order to eliminate u3. Integrating this
equation between z = 0 and z = h, and using the fact that u}|.—o = uj|.—p = uj|.=p = 0, it

follows:
h

Oz /u’{ dz | =0. (4.7
0

Thus, the system in u}, p* can be written in the following form:

vro,ut

— (1 = 1)U — 8,05 + Op* =0 ith of, = 29t

v( )0z uj 2012 + Ozp ) Wi 012 1+>\*2|8zu“{|2’
azp*:()a

4.8

; (4.9
Ox /u“{dz =0,

0

equipped with the boundary conditions stated in (4.2) and the condition [ p* = 0.
Q

10
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For the sake of readability, the superscripts * are omitted in the rest (}f this section.
Denote ¢ = 0,p. Let ¢ € C*°(R) defined by ¢(t) = v(1 — r)t + ﬁ
(4.8) becomes ¢ = 0,(¢(0,u1)).

A simple study of function ¢ allows to show the following properties:

The first equation of

O<v <1 — %) < ¢ |00 < v, and o(t) —— 0. (4.9)

t—=+o0

Therefore the function ¢ is invertible, and 1) = ¢! belongs to C*°(R). Moreover, 1 is an increasing
function as ¢. Integrating ¢ = 9.(¢(0,u1)) with respect to z between 0 and z, the first equation
of (4.8) becomes:

$(0zur (2, 2)) = q(x) 2 + K(x),

where k() is a integration constant. Therefore, it follows that

O.uq(z,z) = P(q(x) z + K(x)).

Since u1|,—0 = s, the integration between 0 and z of the preceding equation yields:

uy(z,2) = s+ /OZ P(q(x)t + k(x))dt. (4.10)

The boundary condition wu | n(z) = 0 implies also:

h(x)

; Y(q(z)t + k(x)) +s = 0. (4.11)

h
For (h,q,s,r) € R, let us introduce F(h,q, s, k) = / (gt + k) + s.
0
Lemma 4.5. For any (h,q,s) € R3 there exists an unique x € R such that F(h,q,s,k) = 0.

Proof. e If such an k exists, it is unique from the implicit function theorem, since for all

(h? q? S’ K) e R4
oF

h
- pu— /
B (14,8, K) /0 Y (gt + w)dt > 0.

e The following limits are computed, using the fact that lirin P(t) = £oo:

t—+oo

lim F(h,q,s,k) =+oc0 and lim F(h,q,s,k) = —00.

K—400 K——00

Therefore, there exists k € R such that F(h,q,s,x) = 0. Let us denote K(h,q,s) = k. By
the implicit function theorem, K € C*®(R?).
]

11
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Therefore, the following expression holds for (h,q,s) € R3:
F(h,q,s,K(h,q,s)) = 0. (4.12)

It is now possible to obtain an information on the sign of 9,K. Indeed, deriving the expression

(4.12) with respect to ¢, it follows

0,F + 0,.F 0,K = 0.

h h

For h > 0, since 0, F = / t' (gt + k)dt > 0 and 9, F = / Y (gt + k)dt > 0, 9,K is strictly
0 0

negative.

Now, using equation (4.7) and the expression (4.10) for u, it follows:

h(z) rz
/ / 0. (¥(a(x)t + K (h(x), q(x), 5)) ) dedz = 0.
0 0

or if changing the direction of integration

h(zx)
| @) = 0o, (wlate)t + K@), atw). ) )ae o
This can be rewritten as
h(zx)
() [ (ha) =) (64 0K (hia)ala).9)) ' (0ot + K (o), afo), )
h(zx)
—— [ @) =) (M@0 K (h(2).a(0).9) ¥ ale)t + K (hla):afo). )t

which can be seen as an ordinary differential equation in ¢. Let

Ule,q) = /0 " (@) —1) (¢ + K (b2 0,9)) ¥ ot + K (b)),
V(z,q) = /Oh(:v) <h(m) — t) (h'(w)@hK(h(m),q, s)) W (qt + K(h(z),q, s))dt.

The differential equation becomes U(z,q(x)) ¢ (x) = =V (z,q(x)) for z € w. Note that this

equation is in some sense a generalized Reynolds equation for the pressure.

Lemma 4.6. Let r < 2/9. Then U(x,q) <0 for any (x,q) € w x R.

Proof. Let (z,q) € w x R. Equation (4.11) and the definition (4.12) of K imply:
h(x)

; Y(qt + K(h(x),q,s))dt = —s,

12
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which becomes, after derivation with respect to ¢

h(x)
/0 <t + 0, K (h(z),q, S)) Y (qt + K (h(x),q,s))dt = 0. (4.13)

With the notation K'(x,q) = 0,K (h(x),q,s), (4.13) implies

h(x)
/ ti//(qt —l—K(h(x),q,s))dt
K/(xaQ) = —=0

h(z) :
/0 ¢'(qt + K(h(x),q, 5))dt

Now, using this expression, U(z, ¢) can be simplified:

h(x)
Ulz,q) = /0 —t (t+8qK(h(x),q, 5)) W (gt + K (h(z), g, 5))dt. (4.14)

Recalling the estimate of |¢|« in (4.9), it follows that for any ¢ € R:

1,1 1
v <O =G0 < va s
1 1
Let m = ;, M = m Then
) gy gy _oh)

Now, (4.14) implies that:

i (54)- (- 22)

h(z) mh(x) M m
<-U < tM [t — ——2 ) =h(2)?* | — - — ).
In order to prove that U remains strictly negative, it suffices to prove that 0 < ERER i.e. that
3 2
% > 7 which is satisfied under the condition r < 9 O

It is possible to apply Picard-Lindelof theorem (or Cauchy-Lipschitz theorem) to the ordinary
differential equation —U(z,q(x)) ¢ (x) = V(z,q(x)), as U remains strictly negative by Lemma
4.6. Since v and K are C*°-functions, the regularity of ¢’ is determined by the regularity of ¢ and
h. By hypothesis, h belongs to H¥(w), with k¥ € N, hence h € L?(w). Moreover, Theorem 4.3
implies that ¢ € L?(w). Thus ¢’ € L?(w), which means ¢ € H'(w).

Iterating this process as long as h is regular, h € H*(w) and ¢ € H*(w) implies that ¢’ € H*(w),
thus d,p = q € Hkﬂ(w), and p € Hk+2(w). By the classical Sobolev embedding, p belongs to
CFl(w).

13
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Last, recalling the expression (4.10), it follows that u; € C**(@), and, taking the first and second
derivatives of (4.10) with respect to z, that 0,u;, 0?u; also belong to CF¥+1(@).
As observed in the introduction of the proof, & and us are given as functions of p, uy, and the

needed regularity follows. O

Remark 4.7. Since in practical applications, h is very regular (h € C*(®)), the preceding
theorem gives as much reqularity as wanted. In particular, the following result will be useful

subsequently.

Corollary 4.8. Assume r < 2/9. If h € HY(w), then the unique solution (u*,p*,o*) of the
system (4.1)-(4.2) satisfies

preC?(@), wui, dui, O2ui € C*(Q), o*, d,0% € C3(Q),
dput € CH(Q),  ub, O.ub,0%ub € CH(Q), 8,0 € CHD), (4.15)
dpul € COQ).

Proof. It suffices to take £k = 1 in the preceding theorem 4.4. O

5 Convergence of the remainders

5.1 Equations on the remainders

From now on, the superscript €7 are dropped although the functions still depend on ¢ and 7.

Using the equations (4.1), system (3.5) becomes

1 1 1 1
pd; — (1 —r)vAvg + 8—2(9xq — gax'Tll - 8—2627'12 =1L+ gCl, (5.1a)
1 1 1 1 1
P dﬂ)g — (1 — T)V AE’UQ + 8—43xq — E—anTlg — gaZTQQ = 8_2L2 + gCQ, (5.1b)
V-v=0, (5.1c)
1 1
)\*dtTll — )\*N(’U,Tlg) =+ 27'11 — 77A5T11 — 27“1/83[;?}1 =L+ gL/H + 77A50'T1, (5.1d)

*

N A 1 1 1 .
Nd¢Ti2 + EN('U,TH —T2) + STi2 NA:T12 — TV <amvz + gazvl> = Lo+ EL/H + nAcoi4H.1e)

N N 1 2rv 1 N
N*dymo2 + AN (v, 112) + ST NA: T — — Oz = Lao + gLIZQ + nAc05,, (5.1f)

with the new quantities

Ly =Ly —pu*-Vuj + (1 — r)vdiui,

Ly = Ly — p 2u* - Vub + (1 — r)vd’us + (1 — r)vd.ub + 0oy,
Liy = L11 + X (—u™ - Voi| + €0u307y) + 2rvouj,

11 =Ly,

*

Ly = Lq9 — = (2u™ - Voiy + Opus(o]; — 059)) + rved,us,

14
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' pl
12 — ~12»

Logs = Log — N (u* - Voie + €0,u07y) + 2rvd,us,

Il
22 = L.

and with the initial and boundary conditions
V=g =up —u", Tl—o=00—-0", V|pn=0, T|r, =0. (5.2)

Let us observe that both initial conditions v|;—¢ and T|;—¢ belong to L?(2). v, ¢ and T are defined
by (3.2), (3.3), (3.4). From the existence theorem 2.1 for (u, p, o) and theorem 4.3 for (u*, p*, o*),
it follows that system (5.1) admits a solution (v,q,7) € L?(0,00, H*(2)) x L?(0,00, L?(£2)) x
C(0, 00, L%(Q)) for r < 8/9.

5.2 Convergence of v and T

Before starting the a priori estimates, let us explain how the non-linear terms in (5.1) are handled.
The non-linear terms v - Vv of Navier-Stokes equation and v - V7 of Oldroyd equation are
treated with the following Lemma 5.1. On the other hand, the non-linear terms N(v,T) =

(£0pv2 — L0.v1) 7 in (5.1d)-(5.1f) are zero when multiplied by .
Lemma 5.1. Let n be the exterior normal of the domain Q2. Let ¢ € H' () be a vector field
satisfying V- ¢ = 0 and ¢ - nlgqg = 0. Let w € H(Q). Then

/¢-wa:0.

Q

Proof. By integration by parts:

The classical approach consists in obtaining a priori estimates for v.

Proposition 5.2. Let (v,q,T) be a solution of (5.1). Then v = (v1, ve) satisfy the following

inequality for € small enough:

d 3
’I“I/,Oa (|U1|2 + |€2}2|2) + 57“(1 — ’I“)V2 (|VEU1|2 + |€V5U2|2) S —Dl — DQ + C, (5.3)
2 2 2
where Dy = g T11 Ozv1 + g /7’12 0,v1, Dy = 27“1//7'12 OpUo + % /7’22 O,v9 and C is a
Q Q Q

constant independent of e.

Proof. The proof consists in obtaining classical a priori estimates on both v; and vs.

15
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Step 1. Let us multiply (5.1a) by v; and integrate over 2. Observe that vy is regular enough
to do so. Since v|gq = 0, the boundary terms in the integration by parts are all zero. For example

— fA€v1 v = f |V€v1|2. Moreover, the convection terms f'v - Vi v1 contained in fdtvl VU1 are
Q Q Q Q
equal to zero by Lemma 5.1, since V - v = 0 and v|spq = 0. It follows:

d 1 1 1 1
ga|v1|2+(1—r)y|vev1|2——2/q@mvl :——/7'11511)1——2/7'12(9zv1+/L1U1+—/011)1-
€ € £ €

Q 9) Q 9) 9)

7D1‘72'f‘l/
(5.4)

It remains to estimate the terms [ L; vy and [ Cy vy.
Q Q

Main idea Estimates of the form: [ L v; —1—% [ Civy < C+k1|Very |2+ k2|0, v2|? will be proved,
Q 0

where C'is a constant independent of € and where the constants k1, ko satisfy k1, ke < (1—r)v/4.
These constants will be precised later in the proof.

In the following, C, ¢; and M; will denote some constants independent of € and 7, which might
depend on |2, on the physical parameters of the problem and on w*, * in sufficiently regular

norms.

e Let us estimate first the linear (with respect to v) term £ of L;. To this end, Poincar inequality

is useful: for f € L%(Q), with f|.—, = 0, |f| < Cp|d.f|. The constant Cp only depends on €.

. . 1 2 1 2

* p/v1 Orul v1 < p|0pu] oo |v1|2 < ,05201%|8xu1|oo 'gﬁzvl =: M,&? gﬁzvl
Q

Note that by Theorem 4.4, d,uj € L>®(£2). In the following, all the regularity results used in

the estimates also follow from Theorem 4.4.

* For the next term, Poincar inequality is combined with Young inequality:

P/U2 dzui v1 < plOzulos V2] 01| < p CBl0:uT| oo |02 02| |82 01]
Q
< pO2]80,u" oo <f|azv2|2 4 < ‘1@@1
T ——_———\ 2 2 e
=:M>

2)
* In a similar way:

2

2
" ” € el . 1
p/u Vv < pCpluife (—!@;m\Q + = ‘—@m ) + pCplusloo '—@m
N—_——— 2 2 e N——— | E

Q =:M3 =:My

Observe here that it was not possible to apply Lemma 5.1, since u* - n|gq # 0.

e It remains the easier terms of L; and C (the ones which do not depend on v).
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* The first term is treated using again Poincar and Young inequalities:

2 2 2 2

1 1

p/u Vui vy < pCplu*|s |Vui||0v1] < = (pCp\u loo | VUi )2+ 8 | < C+ 63 U1
Q
g2 |1 2

x Similarly, (1 —7)v [ 0?ujv; < C + 5 -0,v1

€
* The last term is estimated as follows, using Young inequality:

2 1 2
/(9 oj1v1 < |8 o P +ec (921)1 <C+Hc|=0v]| ,
€

where c is a positive constant independent of € that can be chosen arbitrarily.
Now, let us choose € and ¢ small enough such that all constants satisfy:
9 Mga Mse 2 (1—ry

Mye?, ——, —= Mye*

&
2 7 2 DN 36 (5:5)

Step 2. Let us multiply (5.1b) by v and integrate over 2. Again, the boundary terms in
the integrations by parts vanish, since v2|9q = 0, and the convection terms are equal to zero since
V-v =0 and v|sng =0 (by Lemma 5.1). It follows:

2
e~ d 1 1 1
p——\vgl2+(1—r)ylsvev2\ —5—/q8 Vg = /Tlgaxvz—g/TQQ@ZUQ-i-/LQUQ-i-g/CQUQ.
Q

Q Q Q Q

—Dsy/2rv
(5.6)

Each term of f Ly vy and f (5 vy is estimated with the help of Poincar and Young inequalities as
Q Q
in the preceding step.

el
* 52p/v S Vubvg < €2 pCh|0pul| s <§ 'gﬁzvl
—_———
Q =:Ms5

* er/u* Vg vg < € pCplufloo (|€0sv2]* + |8z1)2|2) + &2 pCp|ub| oo |02 %

2
£
+ §|azv2|2> + &% pCB|0. U3 oo [D:va]*.
—_—————

=:Mg

Q =:My =:Ms
* er/u Vuj vy < —e 2plut) | Vus|? + €2 —CP|(9 va|? < C + 2 My|0, v, |2
v
@ =:Mpy

* By integration by parts (all boundary terms are equal to zero since vs|sgo = 0) and Young

inequality as before:

1 1
(1 —r)ve /82u2v2 —(1—r)ve /(9 us Opve < e(l—1)v <—|(9$u§|2—|——|68$v2|2>.
AT 2

=:Mio

17
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1
* (1—r)y/3§u§ ro < 4—(1—7“)21/20]2_—,\33@\2—1—01]831)2\2 < C+¢1]0,v5)?, where ¢ is a arbitrary
C1

positive Constant

/8 07a Vg < |8 oiaol” + c1|0:v2]* < C + ¢1]0.v2]*.

* The Cy term is treated with integration by parts (again, no boundary terms since vs|pg =

vilsq = 0) and the divergence equation. The term is then treated as the preceding one:

1 1 1 .
/3 0'22?}2 —_/0'228 Vo = /0'228 v = E/8$0'227}1
Q

Q Q
1 C? 1., | 1., |
< CP|amO-§2| -0,v1| < _P|a:c0'§2|2 +co|=0.v1| <CHco|=-0.11
€ 4dco € €
Now, let us choose €, ¢; and ¢y small enough such that
]\4553 2 Mipe (1 — T’)l/
92 ,M66 ’M76,M86,M965 Taclac2 < T (57)

Step 3. After summing (5.4) and (5.6), and multiplying by 2rv, it holds for ¢ small enough
(satisfying (5.5) and (5.7)):
d 2 oy 93 2rv
rvpg (Jv1]* + leve] )—1—57“(1—7“) (IVev1]? + |eVevs? )—8— q (Oyv1 4+ 0,v9) < =Dy —Ds+C,
Q

where C' is a constant independent of €. From the divergence equation V - v = d vy + d,v9 =0

it follows that the pressure term [ ¢ (9,v1 + 9.v2) = 0, and equation (5.3) is obtained.
Q
O

Proposition 5.3. Let us suppose that
A*0:ulloo < 1/12, N|oTsloo < X5 A(J0T1]o0 4 |022l00) < X5 2A%]0:072]00 < X5 AT[0:071]00 < X,

where x = %\/r(l —r). Then for ¢ small enough, 11, T2, Too solution of (5.1) satisfy the
following inequality:
2)

g (IVeria 2 + 2 Verial? + |Veraal?) < Dy + Dy + (1 — )2 (|Vovr 2 + [eVewa|?) + C
(5.8)

2 2

1
=711 +2‘—7'12
2\ |e €

A*d 1 1
CRp (\7'11\2 + 2|m2]? + !7'22\2) + = (

‘1
T =722
€

where C' is a constant independent of €.

Proof. As in the preceding proposition, classical a priori estimates on 711, 712 and 79y are ob-

tained, and the remaining terms are estimated accurately.
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Step 1. Let us multiply (5.1d) by T and integrate over 2. Again, the convection terms
€

f v - V711 111 contained in f ds711 711 are equal to zero by Lemma 5.1, since V - v = 0 and
Q Q
v|pn = 0 (see (5.2)). Moreover, there is no boundary term in the integration by parts since the

boundary conditions on o have be chosen such that 7 - n|pg = 0 (see also (5.2)). It follows:

2

* d
+ g’v5711’2

¥ 1
—|mf* - N(v,m12) 11 + | =711
g

2ry 1
/8 v1 71+ = /L117'11+€—2/L'117'11-

Q

(5.9)

e The terms of / L11 111 are estimated as follows:

Q
2 2

2 2
* * * e |1 e |1
)\*/595%7'127'11 < N'0zu5| 0 <— 1| +— |-T12 )
e 2 |e 2 |e
Q =M,

> e
T 5=

-0
U1 2\e

* In a same way: —/015 011 111 < 0,071 |CP <
—

=:Mj2

)

Let us choose € small enough such that:

and M;e < Min {M i}

M11€2 < ,
6 24

1
2 24

)

Here, it is not possible to choose c3 such that both coefficients are less than r(1 — r)r/6 and

1
—T11
€

1
)\*/83[;?}2 O'TQ T11 S )\*’0{2’00 \a@xvg\ ‘ETH

*| % 1
§ A ’0'12’00 (@‘861‘1}2‘2 + C3

1/24. Therefore,a condition on A*|0}5|eo is imposed such that:

X075 o0 < r(l—r)v
403 B 6

1
d Aoy < —.
an |oTalooCs < 51
Choosing c3 satisfying A*|o7,]e0cs = 1/24, the condition on A\*|07;|ec becomes:
* * v
A oTa]oo < G r(l—r)=:x.
* Similarly the following term can be estimated:

AF
9

1
/028 0'11T11<)\ ‘({9 0'11‘00’8 1)2‘ ‘—Tn ETH

Q

2
1
< N0,071 |0 <4—]83v2]2 +c3 > .
C3
The same reasoning as before allows to control both terms providing that A*|0.07;|c < X-

* In order to treat the term —\* / u* - V7111 111, it is not possible to apply Lemma 5.1, since
Q
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u* - nlgpo # 0. However, integration by parts implies that

)\*
2
—)\*/u*-VTllTH:—? u*-nTH.
0N

Q

On w, since u* = (s,0) (see (4.2)), it holds w* - n = 0. Thus it remains to consider the
boundary integral on I'y,. This boundary integral is split into two integrals on I'y and I'_. On
r

-

it holds u* - n > 0, thus —% [ u*-n7} <0, and this term is trivially bounded by zero.
r

On T'y, the boundary conditions are chosen in subsection 4.2 such that 7|, = 0, therefore

—2 [w-ntd =0.

e All other terms of / L1111 are easier to manage, since they are linear in 717, and they are

Q
treated with Young and Poincar inequalities in a same way as the ones in vy, vo.

e For the terms of /L'H T11, we proceed as before:
Q

A* . 1 1 . 1 P o1 )P
6—2/@@7’127'11 < A0 oo -T2 ‘27'11 < A0 oo <§ -T2+ ‘—7'11 >
Q
Choosing A\*|0,u}|s < 1/12, both terms are bounded by 1/24.
A . . 1 1 . 11 2 2
5—2/@?}10127'11 < Motaloo ‘gazvl ‘57'11 < Motaloo (E ‘gazvl tes| o )

Q

Imposing A*|0]5|eo < X is enough to ensure that the coefficients are less than r(1 — r)v/6 and

1/24.

2
Step 2. Now, multiplying equation (5.1e) by T2 ond integrating over (), with the same
€

reasoning as in the preceding step it follows:

* q 2

2n 2
e dt + € [Verial

A* 1
|T12]? + ?/N('U,Tll — Tog) T12 + 2 ‘5712
Q

, 1 ) , (5.10)
rv
= <3xvg + gazvl> T2 + z /L12 Ti2 t+ = /L,12 T12

Q Q Q

e

The terms in Ly and L), are of the same type as the ones in L1y and L), and are treated very
similarly to them, applying Young inequality, and assuming smallness assumptions on €. Thus,
let us only write the terms needing additional assumptions.

* A* / Opv2 (071 — 059) T12 < XN (|01 |00 + [052]00) |€0 02| , and it is enough to assume that

1
—Ti2
€

Q
A (loT1]oo + l032]00) < x-
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20*
, and we assume that 2X\*|0,075|c0 < X.

Q
that \*|0,u]|e < 1/12.
A* * * * * 1
w55 [0 @i - o) e < X (ot + [hale) | 200

*

1
/1}2 830'1(2 T12 S 2)\*’830{2’00 ‘({921}2’ ngg

1
T =722
€

—T12|, it has already been assumed
€

A* * * * 1
* — [ Ou” (111 — Ta2) 12 < A0 _Tu

, it has already been assumed

—T12
9

Q
that A (o e + [75alo0) < x-
-
Step 3. Multiplying (5.1f) by 2, and estimating the terms just as the ones in 71, it follows
€

2

A*d 1 n 9
A4 2 [ N( b n
o dt’7'22’ + / v, Ti2) To2 + 722 + 6!V57'22\
(5.11)
27"1/ 1
/3ZU2C+ /L227'22+—2/L227'22
Q Q

1
Assuming that A|o7s]e0 < X, A*0:071 |00 < x and X*|0,u}|o0 < 1/12, all the terms gngg Tog and

1
— | L, 722 are bounded and estimated as in Step 1.
€7 a

Step 4. Summing (5.9), (5.10) and (5.11), and noticing that

—/N(U7T12)T11+/N(U,T11 —Tzz)Tqu/N(v,ﬁz)TzQ

1
= / <€5m?12 — g@%) (—=Ti2 11 + (711 — T22) T12 + T2 T22) = 0,

it follows that for € small enough

2 2

_l’_

1

A*d
+2‘—T12
€

2 dt

1
—T11
€

1 1
(Im11? + 2|72 + |722]?) + 3 ( 722

<Dy + Dy + (1 — )2 (|[Veur | + [eVera]?) + C

where we recognized the terms D; + D, and where C' is a constant independent of ¢.
O

From now on, let us come back to the notation with the superscripts ", denoting the dependence

on € and 7.

Theorem 5.4. Suppose that the solution u*, o™ of system (4.1)-(4.2) satisfies the following small-

21
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ness assumptions

A0:uiloo < 1/12, AoTalee < X, A™(|071]00 + [032l00) < Xy 2A7|0:072]00 < X5 AT[02071]00 < X
(5.12)
where x = §+/r(1 —7). Then the following convergences hold up to subsequences when n and

then € tend to zero:

ui” — uj, Oui" — Oui, Oyui’ — Opui in L*(0,T, L*(Q)),
uy' — 0, O.uy" — 0, dus’ =0  in L*(0,T,L*()),
ol — o* in L?(0,T, L*(Q)),

&

ui’ = ul, uwy' =0, o — o* in L>°(0,T, L*(2)).

Proof. Summing (5.3), (5.8) implies that for € small enough (i.e. if assumption (5.12) is satisfied):

d AT d
rup gy (05 + [e0s"?) + S (1P 4+ 207381 4 1r5312) + 2 (Verill? +20Veriy P+ [Versg )

r(1—r)? s |1 2 ) T T B e b R L N &
te— <|8xv§’7| (20077 + 200" P+ 10:05" 17 | + 5o | | ZTg| + g || SO
(5.17)

From this inequality, it follows that v*7 converges to v® in H'(Q2) and 75" converges 7¢ in L?(12),
as 7 tends to zero. v° and 7T° are the solutions solutions of (5.1) without the terms nAT=".
Indeed, recalling the weak formulation of the system (5.1), it suffices to notice that Hlder’s

inequality allows to treat the term nAT*":

0 [ VeV <ot (dlV IR HVGR) 0, Vo€ HYQ)
Q <C (.

Moreover, v® and 7° satisfy the following estimate:

d A d
rvp (Jof* + levs|*) + e dl (1751 + 252l + |75,1%)
1 1 2 1 12 (1P 11 )P
+ 57"(1 — ’I")y2 <|8x’l}i|2 + ‘gazvf + |€ax’l}§|2 + |az’(}§|2) + 5 ‘57'161 + 57—162 + 5 ‘57'282 S C
(5.18)

It remains to pass to the limit as e tends to zero. After integrating (5.18) between 0 and T, it
yields that
> Sl r2er2) < 10205 p2(r2) < Ce, thus the following convergences hold in L*(0,T, L*(Q2)) as
¢ tends to zero:
v] -0 and 0,v] — 0. (5.19)
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From these convergences, it follows that u§ = u} 4+ v{ — u} in L?(0,T, L*(Q)) and d,u§ — 0.u}
in L2(0,T, L*(Q)).

> [[0:05 |22y < C, thus 9,vf converges weakly in L?(0,T, L*(9)). Now, since it is already
known that u§ — u?, it follows that d,u§ — d,u} in L2(0,T, L*()).

> Similarly |05 z2(z2) < [|0:05]|2(r2y < C, thus ev§ and £0.v5 converge strongly to zero in
L2(0,T, L*(9)), and thus u§ = eul+ev§ — 0 in L*(0,T, L*(Q)), and d,u§ — 0 in L?(0, T, L?(£2)).

> [|0zv5] 2 (r2) < g thus 9,u§ converges weakly in L?(0, T, L?(€2)). Since u§ — 0, it implies
that d,u§ — 0 in L2(0,T, L*(Q2)).

> 151 222y, 152l 22y, 1752l 22y < Ce, therefore 75y, 75,75, — 0 in L*(0,T, L*(2)).
Thus eo§; = o%,+75 — oFy in L2(0,T, L3()), and in the same way c05, — 0735 in L2(0, T, L*(Q)),
e05y — 034y in L2(0,T, L*()).

> From the terms with the derivatives in time, using the fact that v¥|;—g = u§ — u* € L?(Q)

and T¢|;=0 = & g—o* € LQ(Q) are bounded independently of €, we can conclude that
[0 oo (z2) < C and  ||7%| poo(r2) < CVE.

These estimates and the uniqueness of the limit imply that v{ and ev§ converge weakly-* in
L>(0,T,L?(2)) toward zero, and that 7° converges strongly in L® (0,7, L?(2)) toward zero,
which proves the last estimate (5.16).

U

Note that in a simplified case (with a simpler geometry), the hypothesis (5.12) is satisfied under

a small data assumption on the physical parameters.

Remark 5.5. When h is constant with respect to x, p* is also independent of x, so that equation
(4.1) reduces to
0 o,us
(1= —r— | —=21 ) =0.
( T) 2 U1 raz <1+)\*2‘azu>ﬂ2

It has been shown in [8] for example that for r < 8/9 this equation admits a unique solution
uj =s(1—7).

, rvoyuj —TrVs
Now, it follows that o, = 1+A*2T821u’{|2 - T and 0§ = —03y = —N*0uio], =
—rus?\*
B2+ A2g2
In this case, hypothesis (5.12) becomes more simple. Since O,uj = —s/h, o}, and o3y are constant

with respect to z, so that the last two conditions are trivially verified. Using the fact that r < 8/9,
it leads to a smallness condition on s\* with respect to h (s\* < h/12 is enough in order to satisfy
all conditions).

Observe that this condition is not optimal, but it shows that in the simplified case when h(x) is

constant, a simple choice of the parameters s, \* and h satisfies hypothesis (5.12).
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5.3 Convergence of the pressure

It remains to prove the convergence of the pressure.

Theorem 5.6. Under the same smallness assumption (5.12), the following convergence result

holds up to a subsequence for p:
e%p P in D'(0,T,L*(Q)). (5.20)
E—

Proof. Throughout the proof, C' will denote some generic constants independent of . Let ¢ < 1.
Let us integrate over Qr = Q x (0,7) equation (5.1a) multiplied by £2¢;, for any function
¢1 € HH(Q). Tt follows:

pe? /3tv1¢1 + pe? / V10, V101 + pe / v20,v1¢91 + (1 — r)usz / Opv1 01 + (1 —r)v / 0,v1 0,1
QT QT QT

QT QT

—i—/@ggqqh :_5/Tllax¢1_/7128z¢1+52/L1¢1+5/01¢17 Yoy € H ().
Qr Qr Qr Qr Qp

(5.21)

Using the fact that ¢, is independent of ¢, the first term becomes

T
2 2 2

pe” | Qi = pe” [ 1 | Opvr = pe” | d1(1(T) — v1(0)),
Q{ Q/ 0/ ([

where v1(0) = Uy — u] denotes the value of v; at time ¢ = 0. Now, introducing

T
w:/th,
0

and using integration by parts for the pressure term (the boundary term is zero since ¢; € H}(Q)),
(5.21) becomes: Vo1 € H (),

2 2 2
pe” | ¢1(vi(T) —v1(0)) + pe° [ v10xv1¢1 + pe [ 1200101 + (1 —r)ve” | Oyv1 Opdy

Qr QO
+ (1 — T)V / 0,11 0,01 — /71'83[;(?1 = —E/Tllax(ﬁl — /T1232¢1 + 82 /L1¢1 +e / Cl¢1.
Qr Q Qr Qr Qr Qr

It remains to estimate all terms independent of . The non-linear terms are to bee handled with

care, since ¢1 ¢ L*°(Q)). Proceeding as in [3], Hlder inequality with exponents 2 + §, §’ and 2
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leads:

T
[ wdmien| < lrly [ Iorlass sl (522)
T 0
1 1 22+9
where 51 + 3 + 5= 1 (which implies that §' = %) According to interpolation theory,
)
[L2,L4], = L** for § = , and the following estimate holds:
o 2496

[v1fa4s < Cloa|] Jor ',
Moreover Lemma 3.2 of [1] states that for vy € H}(£2), it holds:
1|4 < V2|8p01 |4 8,01 P4

Using the two last inequalities and Poincar inequality, (5.22) becomes

T
pe’ /Ulaxv1¢1 SP52|¢1|6'C/|azvl|€/4|3zvl|3€/4|azv1|1€|azvl|,
O 0

and Hlder inequality implies that
1-6/4

1+6/4
pe? / v1d,0161 < pel1l 0w |15 0o 52042
Qr

1
Now, choose # (and thus ¢) such that & > 6. It suffices to take 6 < %, for example take 6 = 3
Then &' = 6, and the usual Sobolev embeddings read H'(§2) < L5(Q) (which is true in dimension

2 or 3). Therefore, the last estimate becomes
13/12 11/12
pe? / ndev161 < pe2Clln | [10xv1 | g 10-0111 g
Qr
Now, recalling that [0,v1][z2(z2) < Ce and [|0,v1]|12(12) < C, we conclude
pe’ /vlaﬂ’l% < p2Cl|g1 ]| me? = pFHVEC| g1 < Cellnlln
Qr
In a similar way, it holds
pf/%@zvltﬁl < p V061 < Celldn -
Qr

For the term pe? [ ¢;(v1(T) —v1(0)), we apply Cauchy-Schwarz inequality. v (0) is bounded, and
Q
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for v1(T'), we use Poincar inequality. It follows, using the fact that |0,v,| < Ce:

P62/¢1(v1(T)—v1(0)) < (Cli+C)|¢nllan < (Clo:01|+C)e? (|61l < C2dullmn < Cellpn .
Q

For the other linear terms, a simple application of Cauchy-Schwarz inequality allows to obtain
similar estimates. Indeed, it suffices to use the estimate (5.18) in order to estimate the L?-norm

of d,v1, O,v1, 111, T12, L1, C1. For example, since |0,v1| < C, the following estimate holds:

pe? / 0,01 Dbt < pe2|Dyn| [Dui| < CE2\ ol .
Q

For the terms L; and C7, C; and the constant part of L; are obviously bounded uniformly in
e. It remains to estimate the linear term L£; of L;. Recalling its definition and using Poincar

inequality in the second estimate:
|L1] < C (Jvi]| + |va| + |0zv1] + |0:01]) < C(|0,v1] + |Ozv1]| + |0,v2]) -
Using again (5.18), the boundedness of £; follows:
£, < C.

Hence Vo1 € HL(Q):

/&ﬂ ¢1 <C (e+ €2|0,v1| + |0.v1] + €|m11| + 12| + €% L] + e|C1]) |¢1]lzr < Celln |-
Q

The same approach with (5.1b) gives a similar estimate, for all ¢o € Hg(Q):

/3Zﬂ<p2 <C (e’:‘ +€4’0m1)2‘ +€2‘({9Z?)2’ +€2’T12’ +€’T22’ +€2’L2‘ +€‘CQ ) ”¢2HH1 < C€|’¢2HH1.
Q

Thus we can conclude that || V7| oo (g-1) < Ce.
Now recall that for f € L2(Q2), it holds that |f| < ||Vq|/g-1 (see for example [17]). Since
p € LE(Q) and p* € L3(R), ¢ lies in L3(2). From the definition of 7 as function of ¢, it is clear
that = € L3(9).
This allows to deduce

7|Loo(z2) < IVl poe(g-1) < Ce — 0,

0
thus 7 tends to zero in L°°(0,T, L3(€2)) when ¢ — 0. Now, since ¢ = (9_7;’ it follows that ¢ tends
to zero in D'(0,T, L3(£2)), and therefore:

ep —,p° in D'(0, T, L*(Q)).
E—
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This finishes the proof. O

5.4 Open problems

This work concerns only the solutions of the problem (3.1) that are obtained as the limit of the
regularized problem we chose (with an additional term —nAe). Since there is no uniqueness

result for problem (3.1), it is not known how other solutions behave.

Formally, the passing to the limit can be done for a # 0 (see [4]), and a similar limit problem
(involving the parameter a, but of the same structure). However, the proof of the existence
theorem in QF strongly relies on the fact that @ = 0. No global results are proved in the case
a # 0.

Last, since the computations are independent of the dimension of the domain €2, the result should

be true in the three-dimensional case. The limit problem on (u*,p*, o*) reads:

( (1- r)u(?ﬁu’f — Ozp™ + 0,073 =0,

(1 — r)wd2uy — Opp”™ + D035 = 0,

0.p" =0,
V-u* =0,
A*
—gazu“fafg — 0,u3053 + 019 =0, (5.23)

A* A*
* * * * * * *
732'“2(033 - 022) - 7@“1012 + 033 = rvo.us,

* *
N (O,uiols + 0,u5033) + 033 = 0,
* *

* * * k 3k * *
Eazul (0'33 — 0'11) — 78Zu20'12 + 019 = T’l/azul.
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