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Abstract

An unconditional existence result of a solution for a steady fluid-structure prob-

lem is stated. More precisely, we consider an incompressible fluid in a thin film,

ruled by the Reynolds equation coupled with a surface deformation modelled by a

non-linear non local Hertz law. The viscosity is supposed to depend non-linearly

on the fluid pressure. Due to the apparition of a mushy region, the two-phase flow

satisfies a free boundary problem defined by a pressure-saturation model.

Such a problem has been studied with simpler free boundaries models (varia-

tional inequality), or with boundary conditions imposing small data assumptions.

We show that up to a realistic hypothesis on the asymptotic pressure-viscosity be-

haviour it is possible to obtain an unconditional solution of the problem.

1 Introduction

The knowledge of the pressure in a lubricated device is a key problem to compute oper-

ational characteristic of such devices such as bearings, seals, magnetic recorder heads...

Mathematically speaking, it means to solve the Reynolds equation ([10]). At first glance,

it is a classical elliptic equation in which coefficients are related to the viscosity µ of the

fluid, the gap h between the surrounding surfaces and some velocities data. However it is

well known that in real operational condition, the pressure inside the fluid is so high that
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the viscosity is no longer constant while the surrounding elastic surfaces are deformed.

This fluid-structure interaction is often described by the Hertz integral model ([18]).

Moreover, the fluid cannot be considered as an homogeneous one. Thus a free bound-

ary between a full film area and the mushy region made by a mixture of oil and air (the

cavitation region) must be included in the model. The most usual one in the mathemat-

ical literature is based upon a first kind of variational inequality ([11], [16]). Considering

all these aspects leads to a much more complicated Reynolds EHD (elastohydrodynamic)

“equation” which is a quasi-variational non local non linear inequality. Existence theorem

and uniqueness results have been obtained by Oden an Wu ([15]), Rodriguez ([17]), Hu

([12]). Most often, the proof of the existence is obtained by a fixed point approach using

both L∞ and H1 estimates, using a small data assumption to obtain compactness results.

More recently, it has been observed ([5], Bayada and Bellout [2]) that such small data

assumption can be avoided if a specific viscosity-pressure behaviour is assumed. From

a practical point of view, this behaviour is much more reasonable than the small data

assumption: satisfactory numerical computation results are obtained for a very large

range of data while the specific viscosity-pressure behaviour retained does not contradict

any experiments ([19]).

Another step in the complexity of the model was introduced as it was observed ([8],

[9]) that the previously used variational inequality model describing the cavitation does

not fulfill a mass flow conservation property. Moreover, it cannot be used to describe some

phenomena like starvation since only data on the pressure can be used in the variational

inequality model in a satisfactory way. Based upon a generalization of the free boundary in

the dam problem ([7], [6]), the new mathematical model addresses a two-unknown system

(pressure and saturation) and a hyperbolic-elliptic Reynolds equation. This model is

a full conservative one and allows both data on the pressure and input flow to be dealt

with. Existence theorem and uniqueness properties have been obtained in [3], [1] for basic

isoviscous fluid and rigid surfaces. Generalization to the full piezoviscous EHD problem

appears in [4] in which an existence theorem using a small data assumption has been

obtained considering only data for the pressure.

The purpose of the present paper is to prove that for this new cavitation model,

the small data assumption can be avoided while boundary data both on input flow and

pressure can be introduced. To be observed also is the fact that while small data as-

sumption allows various approaches to be used (see [4]), the present work relies strongly

on the Grübin transform (see section 2) and does not seem to be generalisable to other

approaches.

In section 2 a precise statement of the problem is given and some related regularized

systems are introduced. Section 3 is devoted to the obtaining of some estimates. Some of
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them are very close, although different, from the one used for the small data case. At last

in section 4 new estimates and the introduction of a specific viscosity-pressure relation

allow to prove the existence of a solution to the problem (Theorem 4.7).

2 Formulation and regularization of the problem

2.1 Statement of the problem

Figure 1: Domain ΩT

Let Ω = (0, L) × (0, 1) a rectangular two-dimensional domain, with its boundary Γ =

Γ0 ∪ Γ1, with Γ0 = {(0, y), y ∈ (0, 1)}. Let Q be the three-dimensional domain given by

Q = Ω× (0, h(x, y)) (see Figure 1).

We consider a newtonian fluid in the domain Q, with a given input parameter G0 on

Γ0× (0, h(x, y)), and a given velocity s = (s, 0) on Ω. Moreover, let us introduce G0(y) =
∫ h(0,y)

0

G0(0, y, z)dz.

In a thin domain (i.e. h small with respect to the other dimensions), it is possible to

reduce the Navier-Stokes equations to the Reynolds equation, which is an equation in Ω

on the pressure only. In order to take into account the phenomenon of cavitation, we

introduce the Elrod-Adams model.

This model considers that the cavitation zone is characterized by :

- a constant pressure, supposed to be equal to zero,

- an homogeneous blend of air and fluid, for example oil.

It introduces a function θ, defined in Ω, corresponding to the local proportion of the fluid

in an elementary domain around the point M(x, y), for (x, y) ∈ Ω (see Figure 2).
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Figure 2: Partition of Ω and profiles of p and θ in the one-dimensional case

If the pressure p is equal to the saturation pressure, p must be positive, so that it is

possible to define an unknown partition of Ω into a part Ω+ where p > 0, and a part

Ω0 where p = 0 (cavitation zone, with a blend of air and oil). Therefore, the function

θ ∈ L∞(Ω) satisfies natural conditions :







θ = 1 in Ω+

0 ≤ θ ≤ 1 in Ω0

Physically, for high pressures, the viscosity of the fluid depends on the pressure p. Let us

denote it by µ(p). In all generality, we suppose µ to be a positive continuous function of

p.

Moreover, we consider the height of the fluid h(p, x, y) to be given by:

h(p, x, y) = h0(x, y) +

∫

Ω

k(x− s, y − t) p(s, t) ds dt, (x, y) ∈ Ω, p ∈ L2(Ω),

where the kernel k is defined by k(x, y) =
k0

√

x2 + y2
, with k0 a non-negative constant.

This kernel corresponds physically to a point contact. The function h0 is supposed to be

regular and positive, such that h0 ≥ m > 0, where m is a constant.

Let us impose the following boundary condition: p|Γ1
= 0. On Γ0, the flow G0 is supposed

to be given as a positive function, with G0 ∈ L∞(Γ0). It is now natural to define the

following functional spaces:

V =
{

φ ∈ H1(Ω), φ|Γ1
= 0
}

,

V + = {φ ∈ V, φ ≥ 0} .

When h tends to zero, it has been proved that the three-dimensional equations reduce to

an equation on p in Ω. The strong formulation of the problem can be written as follows
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(see [3] for more details): Find p and θ such that:










div

(

h3(p)

µ(p)
∇p
)

= 6s
∂(θ(p) h(p))

∂x
, in D′(Ω).

θ ∈ H(p),

where H(p) is the Heaviside function.

Thus the weak formulation of this problem is: Find p ∈ V + and θ ∈ L∞(Ω) such that:

(P)















∫

Ω

h3(p)

µ(p)
∇p · ∇ϕ = 6s

∫

Ω

h(p) θ(p) ∂xϕ+

∫

Γ0

G0 ϕ , ∀ϕ ∈ V,

θ ∈ H(p).

Remark 2.1 It is possible to interpret physically the local input flow G0 as follows. The

weak formulation (P) implicitly contains the following relation between the input flow G0

and the pressure:

−G0(y) =











6s θ0 h(p, 0, y) if p(0, y) = 0,

6s h(p, 0, y)− h3(p, 0, y)

µ(p)

∂p

∂n
if p(0, y) 6= 0.

It is to be noticed that if s < 0, since θ0, h and G0 are positive, only the second case can

occur, and thus G0(y) = 6s h(p, 0, y)− h3(p, 0, y)

µ(p)

∂p

∂n
.

2.2 The problem for the reduced pressure

A classical approach consists in introducing a change of functions that reduces the problem

to one close to an isoviscous case (see [4], in which this approach and the direct one without

such change of functions are compared. It is shown that similar results are obtained in

both cases).

Thus let us use the following change of functions

(Grübin transform):

P (x, y) = a(p(x, y)) =

p(x,y)
∫

0

ds

µ(s)
, (x, y) ∈ Ω.

P is called reduced pressure (see Figure 3).
Figure 3: Profile of the re-

duced pressure P
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Let A be defined by:

A =

+∞
∫

0

ds

µ(s)
.

The case A = +∞ has already been treated in [17]. However, it has been proved experi-

mentally that A has a finite value. In particular, for a viscosity given by Barus law:

µ(p) = µ0e
αp, with µ0 > 0, α > 0,

the quantity A is finite (A =
µ0

α
).

Therefore, we are concerned in this paper with fluids

with a viscosity satisfying A < +∞.

Furthermore, let the function γ be the inverse of the

function a (as shown in Figure 4). Thus

p(x, y) = γ(P (x, y))

Figure 4: Profile of γ(P )

The weak formulation becomes: Find P ∈ V + and θ ∈ L∞(Ω) such that:

(P ′)



























∫

Ω

H3(P )∇P · ∇ϕ = 6s

∫

Ω

H(P ) θ(P ) ∂xϕ+

∫

Γ0

G0 ϕ ,

∀ϕ ∈ V,
θ ∈ H(P ),

with

H(P, x, y) = h0(x, y) +

∫

Ω

k(x− s, y − t) γ(P (s, t)) ds dt.

The purpose of this paper will be to prove an existence theorem (Theorem 4.7) for the

weak formulation (P ′).

2.3 Introduction of a regularized problem

First, in order to regularize the Heaviside function, let us introduce Zη a continuous

approximation of θ (Figure 5) such that, for η > 0:
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Zη(t) =



















1 if t > η,

0 if t < 0,
t

η
if 0 ≤ t ≤ η.

Figure 5: Regularization of θ

Now it remains to regularize the function γ, which is done by truncation (Figure 6). For

ε > 0:

γε(s) =







γ(s) if 0 ≤ s ≤ A− ε,
γ(A− ε) if s ≥ A− ε.

Figure 6: Regularization of γ

The regularized problem becomes: Find Pηε ∈ V + such that:

(Pηε)

∫

Ω

H3
ε (Pηε)∇Pηε · ∇ϕ = 6s

∫

Ω

Hε(Pηε)Zη(Pηε) ∂xϕ +

∫

Γ0

G0 ϕ , ∀ϕ ∈ V,

with

Hε(q, x, y) = h0(x, y) +

∫

Ω

k(x− s, y − t) γε(q(s, t)) ds dt. (1)

3 Existence result and first estimates for the regu-

larized problem

3.1 Existence of a solution

In this section, the existence of a solution for the problem (Pηε) is established, for fixed η

and ε.
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Theorem 3.1 For fixed η > 0 and ε > 0, there exists Pηε ∈ V + solution of (Pηε).

Moreover, Pηε satisfies:

‖Pηε‖H1(Ω) ≤ R,

where R is a constant independent of η and ε.

Proof. Let us emphasize that this result will be shown without any condition on the

data, by means of a fixed point method.

For fixed Pηε ∈ V +, let us introduce the following problem: Find q ∈ V such that:

(Q)

∫

Ω

H3
ε (Pηε)∇q∇ϕ = 6s

∫

Ω

Hε(Pηε)Zη(q) ∂xϕ+

∫

Γ0

G0 ϕ , ∀ϕ ∈ V.

Step 1: Since Hε ≥ h0(x, y) > 0, it is a classical mixed Dirichlet-Neumann problem, for

which the existence and uniqueness of a solution is well known.

Step 2: Let us now derive estimates for the solution q of (Q). Choosing ϕ = q ∈ V in the

weak formulation, it follows:
∫

Ω

H3
ε (Pηε)|∇q|2 = 6s

∫

Ω

Hε(Pηε)Zη(q) ∂xq +

∫

Γ0

G0 q . (2)

Let h0m = min
(x,y)∈Ω

h0(x, y) > 0, therefore Hε(Pηε) ≥ h0m. The left-hand side term can be

estimated in the following way:

h0m ‖Hε(Pηε)∇q‖2L2(Ω) ≤
∫

Ω

H3
ε (Pηε)|∇q|2.

Moreover, using that ‖Zη‖L∞ ≤ 1, and applying Cauchy-Schwarz inequality to the first

right hand-side term in (2), it follows:

6s

∫

Ω

Hε(Pηε)Zη(q) ∂xq ≤ 6|s|
∫

Ω

|Hε(Pηε)| |∂xq| ≤ 6|s| |Ω|1/2 ‖Hε(Pηε)∇q‖L2(Ω).

It remains the second right-hand side term. Let G = ‖G0(y)‖L2(Γ0), hence the following

holds:
∫

Γ0

G0 q ≤ G ‖q‖L2(Γ0) ≤ G ‖q‖L2(Γ) ≤ G ‖q‖H1/2(Γ) ≤ C G ‖q‖H1(Ω)

≤ C G ‖∇q‖L2(Ω) ≤
C

h0m
G ‖Hε(Pηε)∇q‖L2(Ω),

where C denotes several constants obtained from trace theorems in Sobolev spaces and

from Poincaré inequality. These constants are independent of both η and ε.
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At last, equation (2) becomes:

h0m ‖Hε(Pηε)∇q‖2L2(Ω) ≤ 6|s| |Ω|1/2 ‖Hε(Pηε)∇q‖L2(Ω) +
C G

h0m
‖Hε(Pηε)∇q‖L2(Ω).

This implies that:

h0m ‖Hε(Pηε)∇q‖L2(Ω) ≤ 6|s| |Ω|1/2 +
C G

h0m

,

where |Ω| denotes the measure of Ω. The last estimate means that

‖∇q‖L2(Ω) ≤
6|s| |Ω|1/2 h0m + C G

h3
0m

.

Let us emphasize that this estimate is independent of η and ε.

Step 3: It remains to check out the positivity of q.

Let us choose ϕ = q− ∈ V (since q ∈ H1(Ω), q− ∈ H1(Ω)).We obtain
∫

Ω

H3
ε (Pηε)∇(q+ − q−) · ∇q− = 6s

∫

Ω

Hε(Pηε)Zη(q) ∂xq
− +

∫

Γ0

G0 q
−.

The term ∇q+∇q− is zero almost everywhere, and so does the term Zη(q) ∂xq
−. Indeed,

if q ≥ 0, q− = 0, and if q < 0, Zη(q) = 0. It remains:

−
∫

Ω

H3
ε (Pηε)|∇q−|2 =

∫

Γ0

G0 q
−.

Since G0(y) ≥ 0, we have

∫

Ω

H3
ε (Pηε)|∇q−|2 ≤ 0, and thus

∫

Ω

H3
ε (Pηε)|∇q−|2 = 0. Hence

q− is constant almost everywhere. Furthermore q|Γ1
= 0, therefore q− = 0, which proves

that q ≥ 0.

Step 4: In order to finish the proof of Theorem 3.1, it remains to apply Schauder fixed

point theorem. Now, let

R =
6|s| |Ω|1/2 h0m + C G

h3
0m

and BR =
{

f ∈ V +, 0 ≤ ‖f‖H1 ≤ R
}

,

and let us define T : V + −→ V + by T (Pηε) = q, where q is solution of (Q). T is well

defined, and we proved that T (BR) ⊂ BR. Moreover, T is continuous, since the function

Pηε 7→ Hε(Pηε) is continuous. Let (P n
ηε)n∈N be a sequence of V +-functions converging

weakly to Pηε, let (qn)n∈N be the sequence of solutions of (Q) to P n
ηε, and q the solution

corresponding to Pηε. It holds:
∫

Ω

H3
ε (P n

ηε)∇qn∇ϕ = 6s

∫

Ω

Hε(P
n
ηε)Zη(q

n) ∂xϕ+

∫

Γ0

G0 ϕ

∫

Ω

H3
ε (Pηε)∇q∇ϕ = 6s

∫

Ω

Hε(Pηε)Zη(q) ∂xϕ+

∫

Γ0

G0 ϕ
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Subtracting the two equations, we write:

H3
ε (P n

ηε)∇qn −H3
ε (Pηε)∇q

= (H3
ε (P n

ηε)∇qn −H3
ε (Pηε)∇qn) + (H3

ε (Pηε)∇qn −H3
ε (Pηε)∇q).

Using that H3
ε (P n

ηε) − H3
ε (Pηε) tends to zero, it remains the term H3

ε (Pηε)∇(qn − q). In

a similar way:

Hε(P
n
ηε)Zη(q

n)−Hε(Pηε)Zη(q)

= (Hε(P
n
ηε)Zη(q

n)−Hε(Pηε)Zη(q
n)) + (Hε(Pηε)Zη(q

n)−Hε(Pηε)Zη(q)).

Again, Hε(P
n
ηε)−Hε(Pηε) converges to zero. It follows, choosing ϕ = qn− q and using the

definition of Zη:

∫

Ω

H3
ε (Pηε)∇(qn − q) = 6s

∫

Ω

Hε(Pηε) (Zη(q
n)− Zη(q)) ∂x(q

n − q)

=
6s

η

∫

Ω

Hε(Pηε) (qn − q) ∂x(q
n − q)

The first term is bounded . On the other hand, since Hε(Pηε) ≥ Hmηε > 0, and since

the equation above holds for any η, it follows that qn − q tends to zero, and thus that

‖qn − q‖H1(Ω) tends to zero, thus qn converges strongly to q in V +. Finally, applying

Schauder fixed point theorem, it follows that the problem (Pηε) admits a solution Pηε

satisfying

‖Pηε‖H1(Ω) ≤ R.

This finishes the proof. �

Remark 3.2 Let us emphasize that in previous works (in particular [4]), similar H1-

bounds have been obtained provided some smallness assumption on the data. In the present

paper, the constant R is not supposed to satisfy any smallness condition, and in particular

is not supposed to be less than A. Therefore it will be shown separately that Pηε remains

bounded by A.

3.2 Classical estimates

In this section, we will obtain first estimates on Pηε and γε(Pηε). These estimates will be

useful in order to prove the convergence of γε(Pηε) toward the expected function. However,

it will not be enough to pass to the limit, and better estimates will be obtained in the

next section.

Let us start with an L∞ bound for Pηε.
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Proposition 3.3 The solution Pηε of the problem (Pηε) satisfies the following inequality:

‖Pηε‖L∞(Ω) ≤
8|Ω|1/6C

H2
mηε

(

6|s|+ G′C

Hmηε

)

≤ 8|Ω|1/6C

h2
0m

(

6|s|+ G′C

h0m

)

where Hmηε = min
(x,y)∈Ω

Hε(Pηε(x, y)) and G′ = ‖G0‖L∞(Γ0).

Proof. The key point in the proof is to use a lemma by Kinderlehrer-Stampacchia [13].

However, due to the boundary term on Γ0, a specific treatment is to be used.

Let k > 0. Let P
(k)
ηε be the function defined by

P (k)
ηε =







Pηε − k if Pηε ≥ k

0 if Pηε ≤ k

and Ak the set Ak = {(x, y) ∈ Ω̄, Pηε(x, y) ≥ k}. It is easy to check that P
(k)
ηε lies in V +

and that

∇P (k)
ηε =







∇Pηε in Åk,

0 in Ω̄ \ Ak.
(3)

Obviously, we have a similar relation for ∂xP
(k)
ηε .

Choosing ϕ = P
(k)
ηε as a test function in (Pηε), we have:

∫

Ak

H3
ε (P (k)

ηε )|∇P (k)
ηε |2 = 6s

∫

Ak

Hε(P
(k)
ηε )Zη(P

(k)
ηε ) ∂xP

(k)
ηε +

∫

Γ0

G0 P
(k)
ηε .

Now, the last term can be estimated in the following way:

∫

Γ0

G0 P
(k)
ηε ≤ ‖G0‖L∞(Γ0)

∫

Γ0∩Ak

P (k)
ηε ≤ ‖G0‖L∞(Γ0)

∫

Ak

P (k)
ηε

≤ ‖G0‖L∞(Γ0)

∫

Ak

∇P (k)
ηε ,

using Poincaré inequality in L1(Ak). Thus, since ‖G0‖L∞(Γ0) is a constant independent of

ε and η we can conclude that

∫

Ak

H3
ε (P (k)

ηε )|∇P (k)
ηε |2 ≤ 6|s|

∫

Ak

1

H
1/2
mηε

(

H3
ε (P (k)

ηε ) |∇P (k)
ηε |2

)1/2

+ C

∫

Ak

1

H
3/2
mηε

(

H3
ε (P (k)

ηε )|∇P (k)
ηε |2

)1/2
.

11



Hence, using Cauchy-Schwarz inequality, and since Hε(P
(k)
ηε ) ≥ Hmηε:

∫

Ak

H3
ε (P (k)

ηε )|∇P (k)
ηε |2 ≤

(

6|s|
H

1/2
mηε

+
C

H
3/2
mηε

)

|Ak|1/2





∫

Ak

H3
ε (P (k)

ηε )|∇P (k)
ηε |2





1/2

.

It follows that:





∫

Ak

H3
ε (P (k)

ηε )|∇P (k)
ηε |2





1/2

≤
(

6|s|
H

1/2
mηε

+
C G′

H
3/2
mηε

)

|Ak|1/2.

Finally we get that:

∫

Ak

|∇P (k)
ηε |2 ≤

1

H3
mηε

(

6|s|
H

1/2
mηε

+
C G′

H
3/2
mηε

)2

|Ak| ≤
1

H4
mηε

(

6|s|+ C G′

Hmηε

)2

|Ak|.

Moreover, classical Sobolev embeddings (H1(Ω) ⊂ L3(Ω)) imply that:

∫

Ak

|∇P (k)
ηε |2 =

∫

Ω

|∇P (k)
ηε |2 ≥ C





∫

Ω

|P (k)
ηε |3





2/3

= C





∫

Ak

|P (k)
ηε |3





2/3

,

where C depends only on Ω, and thus does not depend on k. Now, let ℓ > k. Clearly

Aℓ ⊂ Ak, therefore





∫

Ak

|P (k)
ηε |3





2/3

≥





∫

Aℓ

|P (k)
ηε |3





2/3

≥





∫

Aℓ

|ℓ− k|3




2/3

≥ (ℓ− k)2|Aℓ|2/3,

since in Aℓ, P ≥ ℓ, thus P
(k)
ηε = P − k ≥ ℓ− k.

Let us denote φ(ℓ) = |Aℓ|. Precedent computations imply that:

φ(ℓ)2/3 ≤ 1

(ℓ− k)2

C

H4
mηε

(

6|s|+ C G′

Hmηε

)2

φ(k),

hence

φ(ℓ) ≤ 1

(ℓ− k)3

C

H6
mηε

(

6|s|+ C G′

Hmηε

)3

φ(k)3/2,

where C denotes different constants independent of ε and η. Applying a lemma by

Kinderlehrer and Stampacchia, given for example in [13, Lemma B.1], we conclude that:

φ(d) = 0 for d3 =
29|Ω|1/2C

H6
mηε

(

6|s|+ C G′

Hmηε

)3

.
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Now, since φ(d) = 0←→ |Ad| = 0←→ Pηε < d in Ω, the precedent relation implies that:

‖Pηε‖L∞(Ω) ≤
8|Ω|1/6C

H2
mηε

(

6|s|+ C G′

Hmηε

)

. (4)

Moreover, since Hmηε is bounded from below by h0m, the second part of the desired

inequality follows immediately from the first one. �

To end this section, let us prove an L1 estimate uniformly with respect to both ε and η

for pηε. This estimate will be used in order to show an L1 bound on p.

Theorem 3.4 There exists a constant C independent of ε and η such that

∫

Ω

pηε =

∫

Ω

γε(Pηε) ≤ C.

Proof. Because of the definition of the kernel k, we know that k(x − s, y − t) ≥
1

2
√

2|Ω|
.Thus Hmηε satisfies

Hmηε ≥ (2
√

2|Ω|)−1

∫

Ω

γε(Pηε).

From (4), and using the fact that Hmηε ≥ h0m, it follows that

‖Pηε‖L∞(Ω) ≤
C

H2
mηε

,

thus
∫

Ω

γε(Pηε) ≤ C‖Pηε‖−2
L∞(Ω),

where C denotes some constants independent of ε and η.

Now, if we suppose that

∫

Ω

γε(Pηε) tends to infinity when ε tends to zero, ‖Pηε‖L∞(Ω)

would tend to zero. Thus ‖Pηε‖L∞(Ω) ≤
A

2
when ε tends to zero. But, from the definition

of γε and the monotonicity of γ we have, for ε small enough

∫

Ω

γε(Pηε) ≤
∫

Ω

γ(Pηε) ≤
∫

Ω

γ

(

A

2

)

.

This leads to a contradiction and finishes the proof. �

13



4 Passing to the limit - Additional estimates

4.1 First estimates for the reduced problem

The following theorem states some immediate estimates on the limit of Pηε.

Theorem 4.1 Let Pη be the limit of the sequence Pηε for ε → 0, and let P be the limit

of the sequence Pη for η → 0. P satisfies:

‖P‖L∞(Ω) ≤ A.

Moreover there exists a constant C independent of ε and η such that

‖p‖L1(Ω) =

∫

Ω

γ(P ) ≤ C.

Before proving this theorem, let us state the following lemma, whose proof can be find in

Bayada and Bellout [2, Lemma 6].

Lemma 4.2 Let E =] −M,M [×] −M,M [⊂ R
2 and let vn be a sequence of functions

L2(E) which converges almost everywhere to v. If

Ωτ = {(x, y) ∈ E, v(x, y) ≥ A+ τ},
Ωn

τ = {(x, y) ∈ E, vn(x, y) ≥ A}

and |Ωτ | 6= 0 then there exists n0 > 0 such that ∀n ≥ n0, |Ωn
τ | ≥

1

2
|Ωτ |.

Proof. (of Theorem 4.1) The first estimate is obtained by contradiction. Let us assume

that there exists τ > 0 such that Ωτ = {(x, y) ∈ Ω, P (x, y) ≥ A + τ} has a non-zero

measure. Then, applying Lemma 4.2 to Pηε, it follows that

∫

Ω

γε(Pηε) ≥
1

2
|Ωτ |γ(A −

ε) −−−→
ε,η→0

+∞, which is a contradiction with Theorem 3.4.

For the second estimate, let τ > 0, and P τ
ηε(x, y) = inf(Pηε(x, y), A − τ). Since Pηε

converges strongly to P in L2(Ω), P τ
ηε converges strongly to P τ(x, y) = inf(P (x, y), A− τ)

in L2(Ω). Now, it is clear that γε(P
τ
ηε) ≤ γε(Pηε), since γε is increasing, thus

∫

Ω

γε(P
τ
ηε) ≤ C

by Theorem 3.4. Moreover, for ε small enough, γε(P
τ
ηε) = γ(P τ

ηε) ≤ γ(A − τ) ≤ C, with

C a constant independent of ε and η, but which depends on τ . Thus for fixed τ , γε(P
τ
ηε)

converges to γ(P τ ) in L1(Ω), and

∫

Ω

γ(P τ ) ≤ C. Now, letting τ go to zero, we obtain

from the monotone convergence theorem that

∫

Ω

γ(P ) ≤ C, since γ(P τ ) −−→
τ→0

γ(P ). �
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4.2 Additional estimates

It remains to pass to the limit in the non-linear terms of (Pηε). Let us explain in the

following the main steps of the proof.

4.2.1 Main idea for passing to the limit

It is well-known ([4]) that the estimates obtained in the precedent section are not enough

to prove an unconditional existence result for the problem (P).

In order to treat the non-linear term when passing to the limit in the equation when

ε → 0 and η → 0, stronger estimates on Hε have to be proved. For the term H3
ε∇Pηε,

since ∇Pηε converges weakly in L2(Ω), it suffices that Hε converges strongly in L6(Ω). To

this purpose, we will show that Hε is bounded in W 1,6(Ω).

To this end, we will see that it is enough to show that γε(Pηε) is bounded in L6(Ω), since

the convolution kernel k in Hε has a regularizing effect. To prove this, we will introduce

the function γε(Pηε)
σ, for some σ > 0, and prove that this function is bounded in H1(Ω).

Thus, we will be able to conclude that γε(Pηε) is bounded in Lσr(Ω), for any r ≥ 2, and

therefore at least in L6(Ω) (see Proposition 4.3).

However, since γε(Pηε)
σ will be used as a test function in the weak formulation, it will be

necessary to introduce a cut-off function ψ and consider γε(Pηε)
σψ(Pηε).

4.2.2 Detailed estimates

In order to obtain the needed estimates, let us introduce an additional hypothesis on the

asymptotic behavior of the piezoviscosity law. More precisely, we suppose that:

∃p∗ > 0, µ(p) = (p+Q)β for p ≥ p∗, with β > 1, Q ≥ 0, (5)

where Q and β are constants. Actually we could suppose only that µ(p) ∼
+∞

(p + Q)β,

which in particular allows to consider Barus law for finite values of p and an asymptotic

behavior of this sort (see Introduction for physical explanation).

The following proposition is the key of the needed estimate on Hε.

Proposition 4.3 Let µ(p) satisfy the condition (5). For 1 < β <
3

2
, γε(Pηε) satisfies

‖γε(Pηε)‖L6(Ω) ≤ C,

where C is independent of ε and η.

Before starting the proof, let us introduce the following functions and notations. Defining

15



a1 =

p∗
∫

0

ds

µ(s)
, the hypothesis (5) means that A = a1 +

(p∗ +Q)1−β

β − 1
. Let us denote

A = a1 + a2. Moreover, let ε be small enough, so that ε <
a2

3
.

Then we introduce the function

δε(Pηε) = (Q+ γε(Pηε))
α ψ(Pηε), (6)

where α will be chosen below and where ψ(t) ∈ C2(R) is a cut-off function defined by

ψ′(t) ≥ 0 and

ψ(t) =







0 for t < a1 +
a2

3
,

1 for a1 +
2a2

3
< t.

(7)

Let us observe that the function δε ∈ V defined in this way is an admissible test function

for the problem (Pηε), since Pηε|Γ1
= 0, and thus on Γ1 we have ψ(Pηε) = 0.

Proof. The result of Proposition 4.3 will be proved under the following condition on the

parameters :

2− α− β ≥ 0, 1 < β <
3

2
, 1 + α− β > 0. (8)

Let us observe that the set of all α and β satisfying the condition (8) is non-empty. In

particular for any β ∈
]

1,
3

2

[

, there exists an α such that (α, β) satisfies the condition

(8).

Introducing the function gηε = γε(Pηε)
σ ψ(Pηε), for σ > 0, we will show that ‖gηε‖H1(Ω) is

bounded. Moreover, let us denote (see Figure 7)

Ω1 = {(x, y) ∈ Ω, Pηε(x, y) ≤ a1 +
2a2

3
}

Ω2 = {(x, y) ∈ Ω, a1 +
2a2

3
< Pηε(x, y) < A− ε}

Ω3 = {(x, y) ∈ Ω, A− ε ≤ Pηε(x, y)}
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Figure 7: Partition of Ω and profile of ψ(Pηε)

Then Ω̄ = Ω̄1 ∐ Ω̄2 ∐ Ω̄3, since these three sets are pairwise disjoints.

Now, expanding |∇gηε(Pηε)|2, it follows that

∫

Ω

|∇gηε(Pηε)|2 = σ2

∫

Ω

γε(Pηε)
2(σ−1)(γ′ε)

2|∇Pηε|2ψ(Pηε)
2

+ 2σ

∫

Ω

γε(Pηε)
2σ−1(γ′ε)

2|∇Pηε|2ψ′(Pηε)ψ(Pηε) +

∫

Ω

γε(Pηε)
2σ|∇Pηε|2ψ′(Pηε)

2.

• In Ω1, each of these three terms are bounded independently of ε and η, since far

from A− ε, Pηε is bounded, and so is γε(Pηε).

• In Ω3, γε(Pηε) = γ(A− ε) is constant, hence γ′ε = 0. Moreover ψ ≡ 1, thus ψ′ ≡ 0.

Therefore

∫

Ω3

|∇gηε(Pηε)|2 = 0.

• In Ω2, we have again ψ ≡ 1. It remains

∫

Ω

|∇gηε(Pηε)|2 ≤ C + σ2

∫

Ω2

γε(Pηε)
2(σ−1)(γ′ε(Pηε))

2|∇Pηε|2.

Now, since δε = (Q+ γε(Pηε))
α ψ(Pηε) = (Q+ γε(Pηε))

α on Ω2, we have γε(Pηε) = δ
1/α
ε −

Q, and thus

γ′ε(Pηε) =
1

α
δ

1−α
α

ε δ′ε =
1

α
(Q+ γε(Pηε))

1−α δ′ε (9)

On the other hand, the hypothesis (5) implies that

a(p) = a1 +

p
∫

p∗

(s+Q)−βds = A+
(p+Q)1−β

1− β .
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Therefore

γε(Pηε) = ((1− β)(Pηε −A))
1

1−β −Q,
hence

γ′ε(Pηε) = ((1− β)(Pηε −A))
β

1−β = (γε(Pηε) +Q)β (10)

Using the two expressions of γ′ε(Pηε) obtained in (9) and (10), we get that

(γ′ε(Pηε))
2 ≤ 1

α
(Q+ γε(Pηε))

1−α+β δ′ε(Pηε),

and conclude that
∫

Ω

|∇gηε(Pηε)|2 ≤ C + σ2

∫

Ω2

1

α
(Q+ γε(Pηε))

1−α+β+2(σ−1) δ′ε(Pηε)|∇Pηε|2.

Choosing σ =
1 + α− β

2
> 0, it follows that

∫

Ω

|∇gηε(Pηε)|2 ≤ C + σ2

∫

Ω2

1

α
δ′ε|∇Pηε|2.

Now, using Proposition 4.4 below, we can conclude that
∫

Ω

|∇gηε(Pηε)|2 ≤ C, (11)

thus ‖gηε‖H1(Ω) is bounded, and this implies that

‖γε(Pηε)
σ‖H1(Ω) ≤ C.

Finally, using Sobolev embeddings, it follows that γε(Pηε) is bounded in Lσr(Ω) for any

r ≥ 2, thus in L6(Ω) for r big enough (r = 6/σ). Therefore, we proved that

‖γε(Pηε)‖L6(Ω) ≤ C.

�

Now, let us present the proof of the following result, which has been used in the precedent

proof in order to establish (11).

Proposition 4.4 Suppose that there exists a constant c∗ > 0 such that ψ satisfies

ψ′(t) ≤ c∗ψ(t), ∀t > a1 +
a2

2
, (12)

and suppose that 0 < α < 1 and 2− α− β ≥ 0. Then the following inequality holds:
∫

Ω

|∇Pηε|2δ′ε(Pηε) ≤ C,

where C is a constant independent of ε and η.
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Remark 4.5 Let us observe that any C2-function ψ satisfying the condition (7) satis-

fies also the condition (12). Indeed, ψ′ is a C1-function on
[

a1 +
a2

2
, A
]

, thus bounded.

Moreover, for t ∈
[

a1 +
a2

2
, A
]

, ψ(t) ≥ ψ(a1 +
a2

2
).

Proof. Step 1: Let us obtain a bound for the term

∫

Ω

H3
ε (Pηε)|∇Pηε|2 δ′ε(Pηε) indepen-

dent of η and ε. To this end, choosing ϕ = δε(Pηε) ∈ V as a test function in (Pηε), we

obtain
∫

Ω

H3
ε (Pηε)|∇Pηε|2 δ′ε(Pηε) = 6s

∫

Ω

Hε(Pηε)Zη(Pηε)δ
′

ε(Pηε)∂xPηε +

∫

Γ0

G0δε(Pηε)

and, using Young inequality,
∫

Ω

H3
ε (Pηε)|∇Pηε|2 δ′ε(Pηε) ≤

1

2

∫

Ω

H3
ε (Pηε)|∇Pηε|2 δ′ε(Pηε)

+ 18s2

∫

Ω

1

Hε(Pηε)
δ′ε(Pηε) +

∫

Γ0

G0δε(Pηε).

Thus the following estimate holds:
∫

Ω

H3
ε (Pηε)|∇Pηε|2 δ′ε(Pηε) ≤ 36s2

∫

Ω

1

Hε(Pηε)
δ′ε(Pηε) + 2

∫

Γ0

G0δε(Pηε). (13)

On the other hand, the trace operator is continuous from W 1,1(Ω) to L1(Γ) (see for

example[14]). Let us denote Ḡ0 the extension of G0 to Ω such that Ḡ0(x, y) = G0(y).

Thus, using Poincaré inequality, since δε(Pηε)|Γ1
= 0,

2

∫

Γ

G0δε(Pηε) = 2

∫

Γ0

G0δε(Pηε) ≤ C2

∫

Ω

Ḡ0δε(Pηε)

≤ ‖Ḡ0‖L∞(Ω)

∫

Ω

|δε(Pηε)| ≤ ‖Ḡ0‖L∞(Ω)

∫

Ω

|δ′ε(Pηε)||∇Pηε|.

Now, using Cauchy-Schwarz and Young inequalities, we have:

2

∫

Γ0

G0δε(Pηε) ≤ C





1

2

∫

Ω

H3
ε (Pηε)|∇Pηε|2 δ′ε(Pηε) +

1

2

∫

Ω

1

H3
ε (Pηε)

δ′ε(Pηε)



 ,

where C denotes a constant independent of ε and η. Using this relation in (13), together

with the definition of h0m, it follows that
∫

Ω

H3
ε (Pηε)|∇Pηε|2 δ′ε(Pηε) ≤

C

h0m

∫

Ω

δ′ε(Pηε) +
C‖Ḡ0‖2L∞

h3
0m

∫

Ω

δ̄ε
′

(Pηε)
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and thus
∫

Ω

H3
ε (Pηε)|∇Pηε|2 δ′ε(Pηε) ≤ C

∫

Ω

δ′ε(Pηε). (14)

Step 2: Let us recall the following lemma (see [2, p. 147]).

Lemma 4.6 Suppose that µ(p) satisfies (5). Let δε be defined as in (6) and ψ as in (7).

Then there exist some constants C and M independent of ε and η such that

δ′ε(t) ≤M + C(Q+ γε(t))ψ(t) ∀ t > 0. (15)

Now, using (14) and (15):

∫

Ω

|∇Pηε|2 δ′ε(Pηε) ≤ C

∫

Ω

M + C(Q+ γε(Pηε))ψ(Pηε)

where we used again that Hε ≥ h0m in order to get rid of the term H3
ε (Pηε). Therefore,

using the fact that γε(Pηε) is bounded in L1(Ω) (Theorem 3.4), and that ψ(t) is a function

in C2(R), we obtain
∫

Ω

|∇Pηε|2 δ′ε(Pηε) ≤ C, (16)

which finishes the proof. �

4.3 Passing to the limit

In this section, we state the existence theorem. In the proof, it is shown that Proposition

4.3 is the key estimate in order to pass to the limit.

Theorem 4.7 Let P be defined as the limit of Pηε as in Theorem 4.1 and θ be the limit of

Zη(Pη) for η → 0. Under the hypothesis (5) and (8), (P, θ) solves the following problem:

(P ′)















∫

Ω

H3(P )∇P · ∇ϕ = 6s

∫

Ω

H(P ) θ(P ) ∂xϕ+

∫

Γ0

G0 ϕ , ∀ϕ ∈ V,

θ ∈ H(P ),

with

H(P, x, y) = h0(x) +

∫

Ω

k(x− s, y − t) γ(P (s, t)) ds dt.

Proof. Since the Fourier transform of the kernel k is given by K(ξ) =
1

√

|ξ|2
, it follows

from the properties of the convolution (see [20, Satz V.2.14] for example) that if γε(Pηε)
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is bounded in L6(Ω), then Hε(Pηε) given by (1) is bounded in W 1,6(Ω), and thus H3
ε (Pηε)

is bounded in H1(Ω).

Hence we have the following convergences, for ε→ 0 and then η → 0:

Pηε→P in L2(Ω), and Zη(Pηε) ⇀ θ(P ) in L∞(Ω),

H3
ε (Pηε) ⇀ J in H1(Ω), and thus H3

ε (Pηε)→ J in L2(Ω).

Now, we showed in the proof of Theorem 4.1 that γε(Pηε) converges to γ(P ) in L1(Ω).

Thus, by the uniqueness of the limit, it follows that J = H3(P ).

Therefore, it is possible to pass to the limit in every term of problem (Pηε). Thus, (P, θ)

is a solution of the problem (P ′). This finishes the proof. �

Remark 4.8 Now, if we consider the problem in one dimension, it is possible to prove

that problems (P) and (P ′) are equivalent. Indeed, since the embedding H1 →֒ C0 is

compact in one-dimensional space, the weak convergence of Pηε implies actually that Pηε

converges uniformly towards P . Thus, γε(Pηε) also converges uniformly towards γ(P ),

thus P < A and problems (P) and (P ′) are equivalent.

However, in the two-dimensional case, we are not able to prove that problems (P) and

(P ′) are equivalent. The estimate ‖P‖L∞(Ω) ≤ A we obtained previously is not enough to

prove the existence of a solution of (P), since p can be infinite and thus does not lie in

H1(Ω). In fact, since physically the pressure p cannot be infinite, it is relevant to have

studied problem (P ′).
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[6] H. Brézis, D. Kinderlehrer, and G. Stampacchia, Sur une nouvelle formulation du
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Cie, Éditeurs, Paris, 1967.

[15] J. T. Oden and S. R. Wu, Existence of solutions to the reynolds equation of eslasto-

hydrodynamic lubrication, Int. Jour. Eng. Sci., Vol.31 (1985), 207–215.

[16] J.-F. Rodrigues, Obstacle problems in mathematical physics, Vol. 134 of ”North-

Holland Mathematics Studies”, North-Holland Publishing Co., Amsterdam, 1987.

[17] J.-F. Rodrigues, Remarks on the Reynolds problem of elastohydrodynamic lubrica-

tion, European J. Appl. Math., Vol. 4(1) (1993), 83–96.

22



[18] A. Z. Szeri, ”Fluid Film Lubrication: Theory and Design”, Cambridge University

Press, 1998.
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