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Abstract

In this paper we study the differential system which describes the
steady flow of an electrically conducting fluid in a saturated porous
medium, when the fluid is subjected to the action of a magnetic field.
The system consists of the stationary Brinkman-Forchheimer equations
and the stationary magnetic induction equation. We prove existence
of weak solutions to the system posed in a bounded domain of R3 and
equipped with boundary conditions. We also prove uniqueness in the
class of small solutions, and regularity of weak solutions. Then we
establish a convergence result, as the Brinkman coefficient (viscosity)
tends to 0, of the weak solutions to a solution of the system formed by
the Darcy-Forchheimer equations and the magnetic induction equation.

Keywords: magnetohydrodynamic flows in porous media, Brinkman-
Forchheimer equations, Darcy-Forchheimer equations, Lorentz force, weak
solutions.
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1 Introduction and main results

Magnetohydrodynamic (MHD) flows in porous media arise in many appli-
cations such as in chemical technology, geophysical energy systems, flow
control processes in mechanical engineering. In metallurgy, many alloy gen-
erally solidify with a dendritic columnar or equiaxial structure. The region
where dendrites and the liquid phase coexist, referred to as mushy zone
during the solidification process is heterogeneous and can be assimilated
to a porous medium. The use of magnetic field is a tool for controlling the
melt flow and thus can influence the solidification process, mostly to create a
finely disposed equiaxed growth morphology, see for instance [18, 19, 33] and
the references therein. In crystal growth applications in porous media, the
applied external magnetic field has been successfully exploited to suppress
unsteady flows and also to reduce the non-uniformity of composition [26].

The purpose of the present work is the mathematical analysis of the dif-
ferential system which describes the steady flow of an electrically conducting
fluid in a bounded domain Ω ⊂ R3 representing a saturated porous medium,
when the fluid is subjected to the action of a magnetic field.

1.1 Problem formulation

Let us consider we are given a source electric current density J0 with com-
pact support in Ω, and denote by B, J , H and E, respectively, the mag-
netic induction, electric current density, magnetic field and electric field. We
look for stationary electromagnetic fields that satisfy the stationary Maxwell
equations where displacement currents are neglected (see [16, 23]):

curlH = J + J0, (1)
curlE = 0, (2)
J = σ1Ω(E + u×B), (3)
B = µH, (4)
div B = 0. (5)

Equations (1)–(5) are considered in R3, 1Ω is the characteristic function
of Ω, σ is the electric conductivity, µ is the magnetic permeability, and u is
the fluid velocity. In the sequel σ and µ are assumed positive constants for
simplicity. In other words, we assume that the fluid is homogeneous with
constant electric conductivity and nonferromagnetic.

The motion of the fluid in Ω is governed by the so-called Brinkman-
Forchheimer equations (see [8, 11, 14, 32]):

div u = h in Ω, (6)
au + b|u|u− γ∆u +∇p = (J + J0)×B in Ω, (7)
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where p is the pressure, a > 0 (viscosity divided by permeability) and
b > 0 are the Darcy and Forchheimer coefficients, respectively, and γ is
the Brinkman coefficient (viscosity). We note that in (6) we assumed, for
generality, a nonzero mass source h as this is frequently assumed in porous
media applications. The term (J + J0) ×B in (7) represents the Lorentz
force due to the induced electric current of MHD.

In order to derive a well-posed problem in Ω we first note that using (3)
and (4) we obtain J and H with respect to B, E and u. Then, from (1)
we deduce that we have

E + u×B =
1

σµ
curlB − 1

σ
J0 in Ω.

Taking the curl of the above equation and using (2) we obtain

1
σµ

curl2 B = curl(u×B) +
1
σ

curlJ0 in Ω.

We require the functions u, B and E to satisfy the following boundary
conditions. For the velocity we specify

u = g on ∂Ω, (8)

where g is a given function on ∂Ω. We should notice here that naturally
the given boundary velocity must be compatible with the conservation mass
equation (6) by requiring the condition

∫

Ω
h dx =

∫

∂Ω
g · n ds. (9)

We also impose the perfect conductor boundary condition

E × n = 0 on ∂Ω, (10)
B · n = 0 on ∂Ω, (11)

n being the unit outward normal vector to ∂Ω. It results from (1), (3), (4),
(8) and (10) that the field B satisfies the condition

1
µ

curlB × n = σ(g ×B)× n on ∂Ω. (12)

Using (11) and the vector identity

(g ×B)× n = (g · n) B − (B · n) g,

the boundary condition (12) turns into

1
µ

curlB × n = σ(g · n) B on ∂Ω.
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Thus we obtain a boundary-value problem for the velocity u, the pressure p
and the magnetic induction B, in the domain Ω, formed by the equations





div u = h, div B = 0,

au + b|u|u− γ∆u +∇p =
1
µ

curlB ×B,

1
σµ

curl2 B = curl (u×B) +
1
σ

curlJ0,

(13)

and the boundary conditions

u = g,
1
µ

curlB × n = σ(g · n) B, B · n = 0 on ∂Ω, (14)

where h and g are given functions defined on Ω and ∂Ω, respectively, and
satisfy (9).

Once Problem (13), (14) is solved, i.e. in fact when the fluid velocity u
and the magnetic field B are known in Ω, the electric field E can simply be
deduced in Ω from B using Equations (1), (3) and (4):

E =
1

σµ
curlB − u×B − 1

σ
J0 in Ω.

The aim of this paper is to investigate the solvability of problem
(13), (14) and to study the limit, as γ → 0, of the corresponding solutions.
Formally, the limit problem is formed by the magnetic induction equation
and the Darcy-Forchheimer equations that is the system





div u = h, div B = 0 in Ω,

au + b|u|u +∇p =
1
µ

curlB ×B in Ω,

1
σµ

curl2 B = curl (u×B) +
1
σ

curlJ0 in Ω,

(15)

supplemented with the boundary conditions

u · n = g · n,
1
µ

curlB × n = σ(g · n) B, B · n = 0 on ∂Ω. (16)

The Brinkman-Forchheimer equations, with a given body force f ,

div u = h, au + b|u|u− γ∆u +∇p = f ,

were studied by many authors, particularly for continuous dependence on
changes in Brinkman and Forchheimer coefficients and convergence of so-
lutions of Brinkman-Forchheimer equations to the solution of the Darcy-
Forchheimer equations

div u = h, au + b|u|u +∇p = f ,
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as the viscosity γ tends to zero, see [3, 9, 24, 25] and the references therein.
For the derivation and justification of the Brinkman and Forchheimer equa-
tions we refer to [8, 14, 32]. The regularity of the solution to the Darcy-
Forchheimer equations is discussed in [7]. A nonstationary model of gas flow
through a porous medium, which obeys to the Darcy-Forchheimer law, is
studied in [1]. A system coupling the linearized Darcy-Brinkman equations
(with b = 0) to the magnetic induction is considered in [11]; a macroscopic
tensorial filtration law in rigid porous media is derived by using the method
of multiple scale expansions. However, to our knowledge, the system cou-
pling the Darcy-Brinkman (or Darcy-Forchheimer) equations with the mag-
netic induction equation has not been studied. There have been extensive
mathematical studies on the solutions of the equations of MHD viscous and
resistive incompressible fluids. In particular, global weak solutions and lo-
cal strong solutions have been constructed in [6]. Properties of weak and
strong solutions have been examined in [28]. Some sufficient conditions for
regularity of weak solutions to the MHD equations were obtained in [15].
A magnetohydrodynamic system consisting of the stationary Maxwell equa-
tions coupled with the transient Navier-Stokes equations is examined in [13].
Stationary systems coupling the MHD equations and the heat equation are
investigated in [4] and [22].

1.2 Main results

Before we can formulate our main results we need to introduce some no-
tations. We assume that Ω is a simply-connected bounded domain in
R3, with smooth boundary ∂Ω. Let Lq(Ω) and W s,q(Ω) (1 ≤ q ≤ ∞,
s ∈ R) be the usual Lebesgue and Sobolev spaces of scalar-valued func-
tions, respectively. When q = 2, W s,q(Ω) is denoted by Hs(Ω). By
‖ · ‖ and (·, ·) we denote the L2-norm and its scalar product, respectively.
The Hölder spaces Ck,α(Ω) (k ∈ N, 0 < α < 1) are defined as the sub-
spaces of Ck(Ω) consisting of functions whose k-th order partial deriva-
tives are Hölder continuous with exponent α. We set Lq(Ω) = (Lq(Ω))3,
Ws,q(Ω) = (W s,q(Ω))3, Hs(Ω) = (Hs(Ω))3 and Ck,α(Ω,R3) = (Ck,α(Ω))3.
We introduce the classical function spaces in the theory of the Navier-Stokes
equations (see [10, 17, 20, 21, 30, 31]):

Ds(Ω) =
{
v ∈ D(Ω,R3) : div v = 0 in Ω

}
,

V = closure of Ds(Ω) in H1(Ω),
V0q = closure of Ds(Ω) in Lq(Ω), 1 < q < ∞.
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Here D(Ω,R3) is the space of infinitely differentiable functions with compact
support in Ω, and valued in R3. As is well known,

V =
{
v ∈ H1

0(Ω) : div v = 0 in Ω
}

,

V0q = {v ∈ Lq(Ω) : div v = 0 in Ω, v · n = 0 on ∂Ω} ,

V ⊂ V02 ⊂ V ′ = dual space of V when V02 is identified with its dual.

We also introduce the spaces

Ds(Ω) =
{
C ∈ D(Ω,R3) : div C = 0 in Ω, C · n = 0 on ∂Ω

}
,

W = closure of Ds(Ω) in H1(Ω),

W0 = closure of Ds(Ω) in L2(Ω),

where D(Ω,R3) is the space of infinitely differentiable functions with com-
pact support in Ω, and valued in R3. We have

W =
{
C ∈ H1(Ω) : div C = 0 in Ω, C · n = 0 on ∂Ω

}
,

W0 = V02,

W ⊂ W0 ⊂ W ′ = dual space of W.

Note that
(∫

Ω | curlC|2 dx
)1/2 defines a norm on W which is equivalent to

that induced by H1(Ω) on W , see [5, Chap. 7, Theorem 6.1]. Recall that
v · n makes sense in W

− 1
q
,q(∂Ω) when v belongs to the space

Hq(div, Ω) = {v ∈ Lq(Ω) : div v ∈ Lq(Ω)},

and we have the Stokes formula: ∀v ∈ Hq(div,Ω), ∀ϕ ∈ W 1,q′(Ω),
∫

Ω
v · ∇ϕ dx = −

∫

Ω
ϕ div v dx + 〈v · n, ϕ〉∂Ω,

where 〈·, ·〉∂Ω is the duality pairing between W
− 1

q
,q(∂Ω) and W

1
q
,q′(∂Ω).

Similarly, if v belongs to the space

H(curl; Ω) = {v ∈ L2(Ω) : curlv ∈ L2(Ω)},

then v has a tangential component v × n ∈ H− 1
2 (∂Ω) and the following

Green’s formula holds

∀w ∈ H1(Ω),
∫

Ω
curlv ·w dx =

∫

Ω
v · curlw dx + 〈v × n, w〉∂Ω.

We assume that

J0 ∈ L2(Ω), h ∈ L2(Ω), g ∈ H 1
2 (∂Ω), with

∫

Ω
h dx =

∫

∂Ω
g · n ds. (17)
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By virtue of Bogovskii’s Theorem, see [10, Section III. 3], there exists u? ∈
H1(Ω) satisfying the equations div u? = h in Ω, u? = g on ∂Ω and the
estimate

‖u?‖H1(Ω) ≤ c
(
‖h‖+ ‖g‖

H 1
2 (∂Ω)

)
, (18)

where c is a constant that depends on Ω only. Without loss of generality,
in the sequel we will suppose that σ = µ = a = b = 1. For notational
convenience, we refer to Problem (13), (14) (for γ > 0) to as Problem (Pγ),
and Problem (15), (16) to as Problem (P). We denote by c a generic constant
that depends on Ω only and by c(γ) a generic constant that depends on Ω
and on γ only.

Definition 1. We say that (u, B) is a weak solution of Problem (Pγ) if the
following conditions are satisfied:

(i) u− u? ∈ V , B ∈ W .

(ii) Equations (13)2, (13)3 hold weakly: for every (v, C) ∈ V ×W , we have




∫

Ω
u · v dx +

∫

Ω
|u|u · v dx + γ

∫

Ω
∇u : ∇v dx

=
∫

Ω
(curlB ×B) · v dx,

∫

Ω
curlB · curlC dx

= −
∫

Ω
(curlC ×B) · u dx +

∫

Ω
J0 · curlC dx.

(19)

(iii) There exists p ∈ L2(Ω) such that Equation (13)2 holds in D ′(Ω,R3).

We denote in the sequel V0 = V03 for simplicity.

Definition 2. We say that (u,B) is a weak solution of Problem (P) if the
following conditions hold:

(i) u− u? ∈ V0, B ∈ W .

(ii) Equations (15)2, (15)3 hold weakly: for every (v, C) ∈ V0 × W , we
have





∫

Ω
u · v dx +

∫

Ω
|u|u · v dx =

∫

Ω
(curlB ×B) · v dx,

∫

Ω
curlB · curlC dx

= −
∫

Ω
(curlC ×B) · u dx +

∫

Ω
J0 · curlC dx.

(20)
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(iii) There exists p ∈ W 1, 3
2 (Ω) such that Equation (15)2 holds in W1, 3

2 (Ω).

Our first main result is concerned with the solvability of Problem (Pγ).

Theorem 1. Assume that the boundary ∂Ω is Lipschitz-continuous. Let
h, g and J0 denote three functions satisfying (17). Then for all γ > 0,
Problem (Pγ) admits a weak solution (uγ , Bγ) in the sense of Definition 1.
Moreover:

(i) Any weak solution (uγ , Bγ) satisfies the estimate

‖uγ‖2 + γ‖∇uγ‖2 + ‖ curlBγ‖2 + ‖uγ‖3
L3(Ω)

≤ c‖J0‖2 + c(γ)
(
‖u?‖2

H1(Ω) + ‖u?‖3
H1(Ω)

)
(21)

and c(γ) is uniformly bounded with respect to γ when γ varies in a
bounded interval.

(ii) There exists ε > 0, depending only on the domain Ω, such that if the
data h, g and J0 satisfy

‖h‖+ ‖g‖
H 1

2 (∂Ω)
+ ‖J0‖ ≤ ε, (22)

then the weak solution (uγ , Bγ) of Problem (Pγ) is unique.

Our second main result is concerned with the regularity of weak solutions
of Problem (Pγ).

Theorem 2. Assume that the boundary ∂Ω is of class C2. Let h, g and J0

denote three functions satisfying (17). Assume in addition that g · n = 0
on ∂Ω, and curlJ0 ∈ Lq(Ω), (h, g) ∈ W 1,q(Ω) ×W2− 1

q
,q(∂Ω), with q ≥ 3

2 .
Then, any weak solution (uγ ,Bγ) of Problem (Pγ) belongs to W2,q(Ω) ×
W2,q(Ω), pγ belongs to W 1,q(Ω) and we have the estimates

‖uγ‖W2,q(Ω) + ‖pγ‖W 1,q(Ω) ≤ c(γ)
(
D + ‖h‖W 1,q(Ω) + ‖g‖

W2− 1
q ,q

(∂Ω)

)
,

‖Bγ‖W2,q(Ω) ≤ c(γ)D̃ + c‖ curlJ0‖Lq(Ω).

Here D and D̃ are positive quantities depending only on q, ‖J0‖, ‖ curlJ0‖,
‖h‖, ‖g‖

H 1
2 (∂Ω)

and ‖ curlJ0‖Lq(Ω), ‖h‖W 1,q(Ω), ‖g‖W2− 1
q ,q

(∂Ω)
, for some

values of q ≤ q (see (42), (45), (48), (51)–(54)).

Our third main result deals with the limit, as γ → 0, of the weak solutions
(uγ , Bγ) of Problem (Pγ).

Theorem 3. Assume that the boundary ∂Ω is Lipschitz-continuous. Let h,
g and J0 denote three functions satisfying (17). Let (γn) be a sequence of
positive numbers which tends to 0. For each γn, let (uγn , Bγn) be a weak
solution (in the sense of Definition 1) of Problem (Pγn). Then the sequence
(uγn , Bγn) converges weakly in L3(Ω) × W to a weak solution (u, B) of
Problem (P), in the sense of Definition 2.
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The rest of the paper is organized as follows. Section 2 is devoted to the
proof of Theorem 1. The existence of weak solutions is proved by introduc-
ing an operator A which is pseudo-monotone and coercive. The coerciveness
of A ensures the control (21) of the solutions. Estimate (21) is then used
to establish uniqueness in the class of small solutions. Section 3 is devoted
to the proof of Theorem 2: the regularity of weak solutions is obtained by
successive applications of classical regularity results for Stokes and curl2

equations. In Section 4 we examine the limit, as γ tends to zero, of the
sequence of approximate solutions (uγ , Bγ) of Problem (Pγ). The main dif-
ficulty is to pass to the limit on the quadratic term |uγ |uγ , knowing that uγ

and curlBγ × Bγ (the right-hand side of equation (15)2) converge only
weakly in L3(Ω) and L

3
2 (Ω), respectively. We use monotony arguments and

a key ingredient which consists in introducing the quantity Xγ by (61) in or-
der to take into account of the strong coupling of the Brinkman-Forchheimer
equations with the magnetic induction equation. Finally we give a direct
proof of existence of weak solutions to Problem (P) by introducing an op-
erator A0 which is pseudo-monotone and coercive.

2 Proof of Theorem 1

One of the difficulties in the proof is related with the quadratic term |u|u
appearing in Problems (Pγ) and (P). The key ingredient to treat such a
term is the following lemma (see [29] for the proof):

Lemma 1. We have, for any v1, v2 ∈ R3,

1
2
|v2 − v1|3 ≤ (|v2|v2 − |v1|v1) · (v2 − v1), (23)

∣∣|v2|v2 − |v1|v1

∣∣ ≤ (|v1|+ |v2|) |v2 − v1|. (24)

2.1 Existence of a weak solution

For any u ∈ V we set ũ = u + u?. We define the operator

A : V ×W → V ′ ×W ′

by

〈A(u, B), (v,C)〉 =
∫

Ω
ũ · v dx +

∫

Ω
|ũ|ũ · v dx + γ

∫

Ω
∇ũ : ∇v dx

−
∫

Ω
(curlB ×B) · v dx +

∫

Ω
curlB · curlC dx

+
∫

Ω
(curlC ×B) · ũ dx, (25)

for any (u,B) and (v, C) in V ×W .
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a) Let us show that the operator A is pseudo-monotone [20, Chapter 2,
Section 2]. Recall that A is said to be pseudo-monotone if A is a bounded
operator and if whenever (un, Bn) converges to (u,B) in V ×W weak and

lim sup 〈A(un, Bn), (un, Bn)− (u, B)〉 ≤ 0, (26)

it follows that for any (v,C) ∈ V ×W ,

lim inf 〈A(un, Bn), (un, Bn)− (v, C)〉 ≥ 〈A(u,B), (u,B)− (v,C)〉. (27)

Using the Hölder inequality and the Sobolev embedding H1(Ω) ↪→ L6(Ω)
we have

∫

Ω

∣∣|ũ|ũ · v∣∣ dx ≤ ‖ũ‖2
L3(Ω) ‖v‖L3(Ω) ≤ c‖ũ‖2

H1(Ω) ‖v‖V ,

∫

Ω

∣∣(curlC ×B) · ũ∣∣ dx ≤ ‖ũ‖L3(Ω) ‖B‖L6(Ω) ‖ curlC‖

≤ c ‖ũ‖H1(Ω) ‖B‖W ‖C‖W .

Estimating similarly the other terms in the right-hand side of (25) we deduce
that

|〈A(u, B), (v,C)〉| ≤ c
(
‖ũ‖H1(Ω) + ‖ũ‖2

H1(Ω) + γ‖ũ‖H1(Ω) + ‖B‖2
W

)
‖v‖V

+ c
(‖B‖W + ‖B‖W ‖ũ‖H1(Ω)

) ‖C‖W ,

which shows that the operator A is bounded.
Consider now a sequence (un, Bn) which converges to (u,B) in V ×W

weak and so that (26) holds. By the compact Sobolev embedding there is a
subsequence of (un, Bn), still indexed by n, such that

un → u and Bn → B in L2(Ω) strong. (28)

Using the fact that ũn − ũ = un − u, we have

〈A(un, Bn), (un − u,Bn −B)〉
=

∫

Ω
ũn · (ũn − ũ) dx +

∫

Ω
|ũn|ũn · (ũn − ũ) dx

+ γ

∫

Ω
∇ũn : ∇(ũn − ũ) dx +

∫

Ω
(curlBn ×Bn) · ũ dx

+
∫

Ω
curlBn · curl(Bn −B) dx−

∫

Ω
curlB ×Bn · ũn dx. (29)

From (26), (28) and (29) we find that

lim sup
(∫

Ω
∇ũn : ∇(ũn − ũ) dx +

∫

Ω
curlBn · curl(Bn −B) dx

)
≤ 0,
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which implies that

lim sup
(∫

Ω
|∇(un − u)|2 dx +

∫

Ω
| curl(Bn −B)|2 dx

)
≤ 0.

Thus there is a subsequence of (un, Bn), still indexed by n, such that

un → u in V strong, Bn → B in W strong,

and then

lim inf 〈A(un, Bn), (un, Bn)− (v, C)〉 = 〈A(u, B), (u, B)− (v, C)〉,
for any (v, C) ∈ V ×W . This proves (27), then A is pseudo-monotone.

b) Let us now check that the operator A satisfies the coerciveness prop-
erty:

〈A(u, B), (u, B)〉
‖(u, B)‖V×W

→ +∞ as ‖(u, B)‖V×W → +∞. (30)

We have

〈A(u, B), (u, B)〉 =
∫

Ω
ũ · u dx +

∫

Ω
|ũ|ũ · u dx

+ γ

∫

Ω
∇ũ : ∇u dx +

∫

Ω
| curlB|2 dx

=
∫

Ω

(|u|2 + u? · u
)

dx +
∫

Ω
(|ũ|ũ− |u|u) · u dx

+
∫

Ω
|u|3 dx + γ

∫

Ω
(|∇u|2 +∇u? : ∇u) dx

+
∫

Ω
| curlB|2 dx.

Using the Hölder inequality and (24) we find that

〈A(u, B), (u, B)〉 ≥ 1
2

(‖u‖2 − ‖u?‖2
)

+ ‖u‖3
L3(Ω)

− ‖u‖L3(Ω) ‖u?‖L3(Ω)

(
2‖u‖L3(Ω) + ‖u?‖L3(Ω)

)

+
γ

2
(‖∇u‖2 − ‖∇u?‖2

)
+ ‖ curlB‖2,

which is written as

〈A(u,B), (u, B)〉
≥ 1

2
‖u‖2 +

γ

2
‖∇u‖2 + ‖ curlB‖2 − 1

2
‖u?‖2 − γ

2
‖∇u?‖2

+ ‖u‖3
L3(Ω)

(
1− ‖u?‖L3(Ω)

(
2

‖u‖L3(Ω)
+
‖u?‖L3(Ω)

‖u‖2
L3(Ω)

))
. (31)
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Then

〈A(u,B), (u,B)〉
≥ 1

2
‖u‖2 +

γ

2
‖∇u‖2 + ‖ curlB‖2 − 1

2
‖u?‖2 − γ

2
‖∇u?‖2, (32)

for ‖u‖L3(Ω) large enough. Inequality (32) implies that (30) holds.

c) We conclude by Theorem 2.7 (Chapter 2, Section 2) in [20] that there
is (u, B) ∈ V ×W solution of A(u, B) = (0, curlJ0) in a weak sense, that
is (ũ, B) satisfies (19). Then by De Rham’s Theorem there exists p ∈ L2(Ω)
such that (13)2 holds in D ′(Ω,R3). Hence Problem (Pγ) has a weak solution
(ũ, B).

2.2 Proof of Estimate (21)

Let (ũ,B) be a weak solution of Problem (Pγ). Since ũ = u + u?, with
u ∈ V , it turns to estimate u and B. We have

〈A(u,B), (u,B)〉 =
∫

Ω
J0 · curlB dx,

then using (31) it holds that

1
2
‖u‖2 +

γ

2
‖∇u‖2 + ‖ curlB‖2 + ‖u‖3

L3(Ω) ≤
∫

Ω

∣∣J0

∣∣ ∣∣ curlB
∣∣ dx

+
1
2
‖u?‖2 +

γ

2
‖∇u?‖2 + 2‖u‖2

L3(Ω)‖u?‖L3(Ω) + ‖u‖L3(Ω)‖u?‖2
L3(Ω). (33)

Using the Young inequality we have
∫

Ω

∣∣J0

∣∣ ∣∣ curlB
∣∣ dx ≤ 1

2
‖J0‖2 +

1
2
‖ curlB‖2,

‖u‖2
L3(Ω)‖u?‖L3(Ω) ≤

1
8
‖u‖3

L3(Ω) + c‖u?‖3
L3(Ω),

‖u‖L3(Ω)‖u?‖2
L3(Ω) ≤

1
4
‖u‖3

L3(Ω) + c‖u?‖3
L3(Ω),

then we deduce from (33) that

1
2
‖u‖2 +

γ

2
‖∇u‖2 +

1
2
‖ curlB‖2 +

1
2
‖u‖3

L3(Ω)

≤ 1
2
‖J0‖2 +

1
2
‖u?‖2 +

γ

2
‖∇u?‖2 + c‖u?‖3

L3(Ω).

Using the Sobolev embedding H1(Ω) ↪→ L3(Ω) and the equality ũ = u+u?

we deduce (21).
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2.3 Uniqueness of weak solutions

Let (u1,B1) and (u2, B2) be two weak solutions of Problem (Pγ). We set
u = u1 − u2 and B = B1 − B2. Combining the equations satisfied by
(ui, Bi) (i = 1, 2) we have, for any (v, C) ∈ V ×W ,∫

Ω
u · v dx +

∫

Ω
(|ũ1|ũ1 − |ũ2|ũ2) · v dx + γ

∫

Ω
∇u : ∇v dx

=
∫

Ω
(curlB ×B1) · v dx +

∫

Ω
(curlB2 ×B) · v dx,

∫

Ω
curlB · curlC dx =

∫

Ω
(u×B1) · curlC dx +

∫

Ω
(u2 ×B) · curlC dx.

Taking (v,C) = (u, B) in the previous equations then adding the results
and using the identity∫

Ω
(curlB ×B1) · u dx +

∫

Ω
(u×B1) · curlB dx = 0,

we get∫

Ω
|u|2 dx +

∫

Ω
(|ũ1|ũ1 − |ũ2|ũ2) · u dx + γ

∫

Ω
|∇u|2 dx +

∫

Ω
| curlB|2 dx

=
∫

Ω
(curlB2 ×B) · u dx +

∫

Ω
(u2 ×B) · curlB dx.

According to (23) we have∫

Ω
|u|2 dx +

1
2

∫

Ω
|u|3 dx + γ

∫

Ω
|∇u|2 dx +

∫

Ω
| curlB|2 dx

≤
∫

Ω
(curlB2 ×B) · u dx +

∫

Ω
(u2 ×B) · curlB dx, (34)

which implies that

min(1, γ)‖u‖2
V + ‖ curlB‖2 ≤

∫

Ω
(curlB2 ×B) · u dx

+
∫

Ω
(u2 ×B) · curlB dx. (35)

Using the Hölder inequality we have∣∣∣∣
∫

Ω
(curlB2 ×B) · u dx

∣∣∣∣ ≤ ‖ curlB2‖ ‖B‖L6(Ω) ‖u‖L3(Ω).

Moreover, using the Sobolev embedding H1(Ω) ↪→ L6(Ω), the equivalence
of norms on W and the Young inequality we deduce that∣∣∣∣

∫

Ω
(curlB2 ×B) · u dx

∣∣∣∣ ≤ c‖ curlB2‖ ‖ curlB‖ ‖u‖V ,

≤ c(γ)‖ curlB2‖2 ‖ curlB‖2 +
min(1, γ)

2
‖u‖2

V .

(36)
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In the same way we obtain
∣∣∣∣
∫

Ω
(u2 ×B) · curlB dx

∣∣∣∣ ≤ ‖u2‖L3(Ω) ‖B‖L6(Ω) ‖ curlB‖

≤ c‖u2‖L3(Ω) ‖ curlB‖2. (37)

Combining (35)–(37) it results that

min(1, γ)
2

‖u‖2
V +

(
1− c(γ)‖ curlB2‖2 − c‖u2‖L3(Ω)

)
‖ curlB‖2 ≤ 0. (38)

We note that, due to (18), (21) and (22), the norms ‖ curlB2‖ and ‖u2‖L3(Ω)

must be chosen as small as possible for ε is small enough. We deduce from
(38) that for such ε > 0 we have u = B = 0 which proves the uniqueness.
The proof of Theorem 1 is achieved.

3 Proof of Theorem 2

Let (u, B) be a weak solution of Problem (Pγ) and let p denote the asso-
ciated pressure. We will obtain the regularity of u, B and p by successive
applications of classical regularity results for the Stokes and curl2 equations.
For the curl2 equation we will use the following lemma (see [12] and [27,
Proposition 2.1] for the proof):

Lemma 2. Let m be a nonnegative integer and 1 < q < ∞. Assume that
Ω is a simply-connected bounded domain in R3 with boundary ∂Ω of class
class Cm+2. Let G ∈ Wm,q(Ω) with div G = 0 in Ω and G · n = 0 on ∂Ω.
Then there exists a unique B ∈Wm+2,q(Ω) such that

{
curl2 B = G, div B = 0 in Ω,

curlB × n = 0, B · n = 0 on ∂Ω,

and
‖B‖Wm+2,q(Ω) ≤ c‖G‖Wm,q(Ω).

The proof of Theorem 2 consists in three steps: the first one concerns
the case 3

2 ≤ q < 2, the second deals with the case 2 ≤ q < 6 and the last
step concerns the case q ≥ 6.

Step 1. Assume first that 3
2 ≤ q < 2 and set q1 = q. The functions u

and p satisfy {
−∆u +∇p = F , div u = h in Ω,

u = g on ∂Ω,
(39)

with F = −u− |u|u + curlB ×B. Since F ∈ L 3
2 (Ω), applying a classical

regularity result for Stokes equations with nonhomogeneous boundary con-
ditions, see [2], we get that u ∈ W2, 3

2 (Ω), p ∈ W 1, 3
2 (Ω) and we have the



15

estimate

‖u‖
W2, 32 (Ω)

+ ‖p‖
W 1, 32 (Ω)

≤ c(γ)
(
‖F‖

L 3
2 (Ω)

+ ‖h‖
W 1, 32 (Ω)

+ ‖g‖
W 4

3 , 32 (∂Ω)

)
.

(40)
Since

‖F‖
L 3

2 (Ω)
≤ c

(
‖u‖+ ‖u‖2

L3(Ω) + ‖ curlB‖2
)

,

using (18) and (21) we find that

‖F‖
L 3

2 (Ω)
≤ c

(
‖J0‖+ ‖J0‖

4
3 + ‖J0‖2

)
+ c(γ)

1∑

j=0

(
‖h‖ 8+j

6 + ‖g‖
8+j
6

H 1
2 (∂Ω)

)

+ c(γ)
3∑

j=1

(
‖h‖j + ‖g‖j

H 1
2 (∂Ω)

)
. (41)

Combining (40) and (41) we thus obtain

‖u‖
W2, 32 (Ω)

+ ‖p‖
W 1, 32 (Ω)

≤ c(γ)
(
D1 + ‖h‖

W 1, 32 (Ω)
+ ‖g‖

W 4
3 , 32 (∂Ω)

)
, (42)

with

D1 = ‖J0‖+ ‖J0‖
4
3 + ‖J0‖2 +

1∑

j=0

(
‖h‖ 8+j

6 + ‖g‖
8+j
6

H 1
2 (∂Ω)

)

+
3∑

j=1

(
‖h‖j + ‖g‖j

H 1
2 (∂Ω)

)
.

The function B solves the problem
{

curl2 B = G, div B = 0 in Ω,

curlB × n = 0, B · n = 0 on ∂Ω,
(43)

with G = curl(u×B) + curlJ0. Using the vector identity

curl(u×B) = (div B)u− (div u)B + (B · ∇)u− (u · ∇)B,

it holds that

curl(u×B) = −hB + (B · ∇)u− (u · ∇)B, (44)

so that using the Sobolev embeddings W 1, 3
2 (Ω) ↪→ L3(Ω), W 2, 3

2 (Ω) ↪→
Lr(Ω), for all 1 ≤ r < ∞, and the Hölder inequality we find that
curl(u × B) ∈ Lq1(Ω), therefore G ∈ Lq1(Ω). Clearly div G = 0. Let
us check that G · n = 0 on ∂Ω. Since J0 has its support contained in Ω it
turns to show that curl(u×B) · n = 0 on ∂Ω. Since

(u×B)× n = (u · n) B − (B · n) u,
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using (14) and the assumption g ·n = 0 on ∂Ω, it holds that (u×B)×n = 0
on ∂Ω. The latter relation implies curl(u×B)·n = 0 on ∂Ω since curlC·n is
a tangential differential operator on ∂Ω in the direction of the vector C×n,
see for instance [5, Chap. 7, Section 5]. Hence G · n = 0 on ∂Ω. Now,
applying Lemma 2 with m = 0 we find that B ∈W2,q1(Ω) and

‖B‖W2,q1 (Ω) ≤ c‖G‖Lq1 (Ω).

From (44) we have that

‖ curl(u×B)‖Lq1(Ω) ≤ c
(
‖h‖L3(Ω) + ‖u‖

W2, 32 (Ω)

)
‖ curlB‖,

then using (18), (21) and (42) we find that

‖G‖Lq1(Ω) ≤ c(γ)D2 + ‖ curlJ0‖Lq1(Ω)

where
D2 =

(
D1 + ‖h‖

W 1, 32 (Ω)
+ ‖g‖

W 4
3 , 32 (∂Ω)

)
×

×

‖J0‖+

2∑

j=1

(
‖h‖ j+1

2 + ‖g‖
j+1
2

H 1
2 (∂Ω)

)

 .

We thus have (for 3
2 ≤ q1 < 2)

‖B‖W2,q1 (Ω) ≤ c(γ)D2 + c‖ curlJ0‖Lq1(Ω). (45)

It remains to establish the regularity of u and p when q1 > 3
2 . Using the

Sobolev embeddings W 2,q1(Ω) ↪→ C0,µ(Ω), with 0 < µ < 1, it holds that B ∈
C0,µ(Ω,R3) so that now the function F in (39) belongs to Lq1(Ω). Applying
the regularity result for the solution to (39) we find that u ∈ W2,q1(Ω),
p ∈ W 1,q1(Ω) and we have the estimate

‖u‖W2,q1(Ω) + ‖p‖W 1,q1 (Ω)

≤ c(γ)
(
‖F‖Lq1(Ω) + ‖h‖W 1,q1 (Ω) + ‖g‖

W2− 1
q1

,q1(∂Ω)

)
. (46)

Using also the Sobolev embeddings W 2, 3
2 (Ω) ↪→ Lr(Ω), for all 1 ≤ r < ∞,

we have

‖F‖Lq1 (Ω) ≤ c

(
‖u‖

W2, 32 (Ω)
+ ‖u‖2

W2, 32 (Ω)
+ ‖B‖2

W2,q1(Ω)

)
. (47)

Combining (42), (45)–(47) we get the estimate, for 3
2 < q1 < 2,

‖u‖W2,q1(Ω) + ‖p‖W 1,q1 (Ω)

≤ c(γ)
(
D3 + ‖h‖W 1,q1 (Ω) + ‖g‖

W2− 1
q1

,q1 (∂Ω)

)
, (48)
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where
D3 =D1 + ‖h‖

W 1, 32 (Ω)
+ ‖g‖

W 4
3 , 32 (∂Ω)

+ D2
1 + ‖h‖2

W 1, 32 (Ω)
+ ‖g‖2

W 4
3 , 32 (∂Ω)

+ D2
2 + ‖ curlJ0‖2

Lq1 (Ω).

Step 2. Let us now assume 2 ≤ q < 6 and set q2 = q. By the Sobolev
embedding there is q1 ∈ (3

2 , 2) such that W 1,q1(Ω) ↪→ Lq2(Ω). From the
previous step it results that B ∈ C0,µ(Ω,R3) (0 < µ < 1) and curlB ∈
Lq2(Ω). Using again the Sobolev embedding W 2, 3

2 (Ω) ↪→ Lr(Ω), for all
1 ≤ r < ∞, we have that the function F in (39) belongs to Lq2(Ω) and we
have the estimate

‖F‖Lq2 (Ω) ≤ c

(
‖u‖

W2, 32 (Ω)
+ ‖u‖2

W2, 32 (Ω)
+ ‖B‖2

W2,q1(Ω)

)
. (49)

Applying the regularity result for the solution to (39) we find that u ∈
W2,q2(Ω), p ∈ W 1,q2(Ω) and we have the estimate

‖u‖W2,q2(Ω) + ‖p‖W 1,q2 (Ω)

≤ c(γ)
(
‖F‖Lq2(Ω) + ‖h‖W 1,q2 (Ω) + ‖g‖

W2− 1
q2

,q2(∂Ω)

)
. (50)

Combining (42), (45), (49) and (50) we get the estimate

‖u‖W2,q2 (Ω)+‖p‖W 1,q2 (Ω) ≤ c(γ)
(
D3+‖h‖W 1,q2 (Ω)+‖g‖W2− 1

q2
,q2 (∂Ω)

)
. (51)

Next we deduce from (44) that curl(u×B) belongs to Lq2(Ω) and we have
the estimate

‖ curl(u×B)‖Lq2 (Ω) ≤ c‖B‖W2,q1 (Ω)

(
‖h‖Lq2 (Ω) + ‖u‖W2,q1 (Ω)

)
.

Thus the function G in (43) belongs to Lq2(Ω) and satisfies

‖G‖Lq2(Ω) ≤ c(γ)D4 + ‖ curlJ0‖Lq2(Ω)

with

D4 =
(
D3 + ‖h‖W 1,q1 (Ω) + ‖g‖

W2− 1
q1

,q1 (∂Ω)

)(
D2 + ‖ curlJ0‖Lq1 (Ω)

)
.

Applying the regularity result to the solution B of (43) we obtain that B
belongs to W2,q2(Ω) and satisfies the estimate

‖B‖W2,q2 (Ω) ≤ c(γ)D4 + c‖ curlJ0‖Lq2(Ω). (52)

Step 3. Let us finally assume q ≥ 6 and set q3 = q. Let q2 ∈ (3, 6) so
that by the Sobolev embedding we have W 1,q2(Ω) ↪→ C0,µ(Ω) (0 < µ < 1).
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Therefore, the functions u, B and curlB belong to C0,µ(Ω,R3) and then
the function F in (39) belongs to C0,µ(Ω,R3). Arguing as in Step 2, using
the Sobolev embedding W 2, 3

2 (Ω) ↪→ Lq3(Ω), we find that u ∈ W2,q3(Ω),
p ∈ W 1,q3(Ω) and we have the analogue of (51):

‖u‖W2,q3 (Ω)+‖p‖W 1,q3 (Ω) ≤ c(γ)
(
D5+‖h‖W 1,q3 (Ω)+‖g‖W2− 1

q3
,q3 (∂Ω)

)
, (53)

with
D5 =D1 + ‖h‖

W 1, 32 (Ω)
+ ‖g‖

W 4
3 , 32 (∂Ω)

+ D2
1 + ‖h‖2

W 1, 32 (Ω)
+ ‖g‖2

W 4
3 , 32 (∂Ω)

+ D2
4 + ‖ curlJ0‖2

Lq2 (Ω).

Since curl(u × B) belongs to C0,µ(Ω,R3) it holds that the function G
in (43) belongs to Lq3(Ω). Arguing as in Step 2 we find that B belongs to
W2,q3(Ω) and we have the analogue of (52):

‖B‖W2,q3 (Ω) ≤ c(γ)D6 + c‖ curlJ0‖Lq3(Ω), (54)

with

D6 =
(
D3 + ‖h‖W 1,q2 (Ω) + ‖g‖

W2− 1
q2

,q2 (∂Ω)

)(
D4 + ‖ curlJ0‖Lq2 (Ω)

)
.

The proof of Theorem 2 is achieved.

4 The limit γ → 0

4.1 Proof of Theorem 3

For notational convenience we drop here the subscript n; we denote by
(uγ , Bγ) the weak solution of Problem (Pγ), the existence of which was
stated in Theorem 1. From (21) we deduce that

(uγ)γ>0 is bounded in L3(Ω),

(
√

γ uγ)γ>0 is bounded in H1(Ω),
(Bγ)γ>0 is bounded in W.

The sequences (|uγ |uγ)γ>0 and (curlBγ × Bγ)γ>0 are then bounded in
L

3
2 (Ω). It results from the previous estimates that there exist u ∈ L3(Ω),

B ∈ W and χ ∈ L 3
2 (Ω), and subsequences of (uγ)γ>0 and (Bγ)γ>0, still

indexed by γ, such that:

uγ ⇀ u in L3(Ω) weak, (55)
Bγ ⇀ B in W weak, (56)

Bγ → B in L2(Ω) strong, (57)

|uγ |uγ ⇀ χ in L
3
2 (Ω) weak. (58)
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Clearly, div u = h. It results from the Stokes formula that

〈uγ · n, w〉∂Ω = 〈g · n, w〉∂Ω

=
∫

Ω
uγ · ∇w dx +

∫

Ω
hw dx, ∀ w ∈ H1(Ω).

According to (17) we then have
∫
Ω uγ ·∇w dx = 0 for all γ > 0, then for the

weak limit u of uγ we have

lim
γ→0

∫

Ω
uγ · ∇w dx =

∫

Ω
u · ∇w dx = 0,

therefore

lim
γ→0

〈uγ · n, w〉∂Ω = 〈g · n, w〉∂Ω

=
∫

Ω
u · ∇w dx +

∫

Ω
hw dx, ∀ w ∈ H1(Ω),

that is u · n = g · n in H− 1
2 (∂Ω). We conclude that u− u? ∈ V0.

Now, using (55)–(58) one can pass to the limit, as γ → 0, in (19) and
obtain that, for every (v, C) ∈ V ×W ,





∫

Ω
u · v dx +

∫

Ω
χ · v dx =

∫

Ω
(curlB ×B) · v dx,

∫

Ω
curlB · curlC dx

= −
∫

Ω
(curlC ×B) · u dx +

∫

Ω
J0 · curlC dx.

(59)

Note that, by density of V in V0, Equation (59)1 holds for any v ∈ V0. Using
De Rham’s Theorem, there exists p ∈ W 1, 3

2 (Ω) such that

u + χ− curlB ×B = −∇p.

Consequently, the functions u, B and χ satisfy the differential system




u + χ +∇p = curlB ×B,

div u = h,

curl2 B = curl(u×B) + curlJ0.

(60)

To prove Theorem 3 it remains to show that χ = |u|u and this is an es-
sential point in the proof. This will be shown by using monotony arguments.
Introduce the variable

Xγ =
∫

Ω

(|uγ − u|2 + (|uγ |uγ − |w|w) · (uγ −w) + γ|∇(uγ − u)|2

+ | curl(Bγ −B)|2)dx, (61)
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where w ∈ L3(Ω). Since the map v 7→ |v|v from L3(Ω) into L3/2(Ω) is
monotone, the function (|uγ |uγ−|w|w) · (uγ−w) is nonnegative. It results
that Xγ ≥ 0. Taking v = uγ − u? and C = Bγ in (19) then adding the
results we obtain

∫

Ω

(|uγ |2 + |uγ |3 + γ|∇uγ |2 + | curlBγ |2
)

dx

=
∫

Ω
(uγ · u? + |uγ |uγ · u? + γ∇uγ : ∇u?) dx

−
∫

Ω
((curlBγ ×Bγ) · u? − J0 · curlBγ) dx. (62)

Similarly, taking v = u−u? as a test function in equation (60)1 and C = B
in equation (60)3 and adding the results yields

∫

Ω

(|u|2 + χu + | curlB|2) dx

=
∫

Ω
(u · u? + χ · u? − (curlB ×B) · u? + J0 · curlB) dx. (63)

Expanding Xγ and using (62) it results that

Xγ =
∫

Ω

(|u|2 − 2uγ · u + uγ · u?

)
dx

+
∫

Ω

(|w|3 + |uγ |uγ · (u? −w)− |w|w · uγ

)
dx

+
∫

Ω
γ

(|∇u|2 − 2∇uγ : ∇u +∇u : ∇u?

)
dx

+
∫

Ω

(| curlB|2 − 2 curlB · curlBγ − (curlBγ ×Bγ) · u?

)
dx

+
∫

Ω
J0 · curlBγ dx.

Passing to the limit, as γ → 0, in the previous equality, using (55)–(58), it
holds that

lim
γ→0

Xγ =
∫

Ω

(
u · u? − |u|2 + |w|3 − |w|w · u + χ(u? −w)

)
dx

−
∫

Ω

(| curlB|2 + (curlB ×B) · u? − J0 · curlB
)

dx.

Using (63) we obtain

lim
γ→0

Xγ =
∫

Ω
(χ− |w|w) · (u−w) dx ≥ 0.

Since u ∈ L3(Ω) and w is an arbitrary function in L3(Ω), a Minty’s argument
allows to conclude that χ = |u|u. The proof of Theorem 3 is complete.
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4.2 Existence of a weak solution to problem (P): a direct
proof

One can prove directly the existence of a weak solution to problem (P),
without passing trough the limit, as γn → 0, of the sequence of approximate
solutions (uγn , Bγn) of (Pγn). We first note that V0×W is a reflexive Banach
space. Similarly as in Section 2 we set, for any u ∈ V0, ũ = u+u?. Consider
the operator

A0 : V0 ×W → V ′
0 ×W ′

defined by

〈A0(u, B), (v, C)〉 =
∫

Ω
ũ · v dx +

∫

Ω
|ũ|ũ · v dx

−
∫

Ω
(curlB ×B) · v dx +

∫

Ω
curlB · curlC dx

+
∫

Ω
(curlC ×B) · ũ dx, (64)

for any (u,B) and (v, C) in V0 ×W .

a) Let us show that the operator A0 is pseudo-monotone. Indeed, using
the Hölder inequality and the Sobolev embedding H1(Ω) ↪→ L6(Ω) we have

∫

Ω

∣∣|ũ|ũ · v∣∣ dx ≤ ‖ũ‖2
L3(Ω) ‖v‖L3(Ω) = ‖ũ‖2

L3(Ω) ‖v‖V0 ,

∫

Ω

∣∣(curlC ×B) · ũ∣∣ dx ≤ ‖ curlC‖ ‖B‖L6(Ω) ‖ũ‖L3(Ω)

≤ c ‖ũ‖L3(Ω) ‖B‖W ‖C‖W .

Estimating similarly the other terms in the right-hand side of (64) we arrive
at

|〈A0(u,B), (v, C)〉| ≤ c
(
‖ũ‖L3(Ω) + ‖ũ‖2

L3(Ω) + ‖B‖2
W

)
‖v‖V0

+ c
(‖B‖W + ‖B‖W ‖ũ‖L3(Ω)

) ‖C‖W ,

which shows that the operator A0 is bounded.
Consider now a sequence (un, Bn) which converges to (u,B) in V0×W

weak and so that

lim sup 〈A0(un, Bn), (un, Bn)− (u,B)〉 ≤ 0. (65)

By the compact Sobolev embedding there is a subsequence of (Bn), still
indexed by n, such that

Bn → B in L2(Ω) strong. (66)
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Using the identity ũn − ũ = un − u, we have

〈A0(un, Bn), (un − u, Bn −B)〉
=

∫

Ω
ũn · (ũn − ũ) dx +

∫

Ω
|ũn|ũn · (ũn − ũ) dx

+
∫

Ω
(curlBn ×Bn) · ũ dx +

∫

Ω
curlBn · curl(Bn −B) dx

−
∫

Ω
(curlB ×Bn) · ũn dx. (67)

From (65)–(67) and the fact that

lim
∫

Ω
|ũ|ũ · (ũn − ũ) dx = 0,

we find that

lim sup
(∫

Ω
ũn · (ũn − ũ) dx +

∫

Ω
(|ũn|ũn − |ũ|ũ) · (ũn − ũ) dx

+
∫

Ω
| curl(Bn −B)|2 dx

)
≤ 0.

Since the map v 7→ |v|v from L3(Ω) into L
3
2 (Ω) is monotone we obtain

lim sup
(∫

Ω
ũn · (ũn − ũ) dx +

∫

Ω
| curl(Bn −B)|2 dx

)
≤ 0. (68)

By convexity of the quadratic function x → x2 we have

lim
∫

Ω
ũn · (ũn − ũ) dx ≥ 0,

then we deduce from (68) that there is a subsequence of (un,Bn), still
indexed by n, such that

un → u in L2(Ω) strong, Bn → B in W strong.

Now we easily verify that

lim inf 〈A0(un, Bn), (un, Bn)− (v, C)〉 = 〈A0(u,B), (u,B)− (v,C)〉

for any (v, C) ∈ V0 ×W . We conclude that A is pseudo-monotone.

b) Let us now verify that the operator A0 satisfies the coerciveness prop-
erty:

〈A0(u, B), (u, B)〉
‖(u, B)‖V0×W

→ +∞ as ‖(u, B)‖V0×W → +∞. (69)
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We have

〈A0(u, B), (u, B)〉 =
∫

Ω

(|u|2 + u? · u
)

dx +
∫

Ω
((|ũ|ũ− |u|u) · u) dx

+
∫

Ω
|u|3 dx +

∫

Ω
| curlB|2 dx.

Using the Hölder inequality and (24) we find that

〈A0(u,B), (u,B)〉 ≥ 1
2

(‖u‖2 − ‖u?‖2
)

+ ‖u‖3
L3(Ω) + ‖ curlB‖2

− ‖u‖L3(Ω) ‖u?‖L3(Ω)

(
2‖u‖L3(Ω) + ‖u?‖L3(Ω)

)
,

that implies

〈A0(u,B), (u,B)〉 ≥ ‖ curlB‖2 − 1
2
‖u?‖2

+ ‖u‖3
L3(Ω)

(
1− ‖u?‖L3(Ω)

(
2

‖u‖L3(Ω)
+
‖u?‖L3(Ω)

‖u‖2
L3(Ω)

))
, (70)

then
〈A(u,B), (u,B)〉 ≥ ‖ curlB‖2 +

1
2
‖u‖3

L3(Ω) −
1
2
‖u?‖2 (71)

for ‖u‖L3(Ω) large enough. From (70) and (71) we easily deduce (69).

c) We conclude by Theorem 2.7 (Chapter 2, Section 2) in [20], that
there is (u, B) ∈ V0 ×W so that A0(u, B) = (0, curlJ0) in a weak sense,
that is (ũ, B) satisfies (20). Then De Rham’s Theorem gives the existence of
p ∈ W 1, 3

2 (Ω) such that (15)2 holds in L
3
2 (Ω). We conclude that Problem (P)

has a weak solution (ũ, B).
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[29] J. Simon, Régularité de la solution d’un problème aux limites non
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